307 research outputs found

    The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions

    Get PDF
    The mean ages of early-type galaxies obtained from the analysis of optical spectra, give a mean age of 8 Gyr at z = 0, with 40% being younger than 6 Gyr. Independent age determinations are possible by using infrared spectra (5-21 microns), which we have obtained with the Infrared Spectrograph on the Spitzer Observatory. This age indicator is based on the collective mass loss rate of stars, where mass loss from AGB stars produces a silicate emission feature at 9-12 microns. This feature decreases more rapidly than the shorter wavelength continuum as a stellar population ages, providing an age indicator. From observations of 30 nearby early-type galaxies, 29 show a spectral energy distribution dominated by stars and one has significant emission from the ISM and is excluded. The infrared age indicators for the 29 galaxies show them all to be old, with a mean age of about 10 Gyr and a standard deviation of only a few Gyr. This is consistent with the ages inferred from the values of M/L_B, but is inconsistent with the ages derived from the optical line indices, which can be much younger. All of these age indicators are luminosity-weighted and should be correlated, even if multiple-age components are considered. The inconsistency indicates that there is a significant problem with either the infrared and the M/L_B ages, which agree, or with the ages inferred from the optical absorption lines.Comment: Accepted for publication in Ap

    On the relation between sSFR and metallicity

    Full text link
    In this paper we present an exact general analytic expression Z(sSFR)=y/Λ(sSFR)+I(sSFR)Z(sSFR)=y/\Lambda(sSFR)+I(sSFR) linking the gas metallicity Z to the specific star formation rate (sSFR), that validates and extends the approximate relation put forward by Lilly et al. (2013, L13), where yy is the yield per stellar generation, Λ(sSFR)\Lambda(sSFR) is the instantaneous ratio between inflow and star formation rate expressed as a function of the sSFR, and II is the integral of the past enrichment history, respectively. We then demonstrate that the instantaneous metallicity of a self-regulating system, such that its sSFR decreases with decreasing redshift, can be well approximated by the first term on the right-hand side in the above formula, which provides an upper bound to the metallicity. The metallicity is well approximated also by the L13 ideal regulator case, which provides a lower bound to the actual metallicity. We compare these approximate analytic formulae to numerical results and infer a discrepancy <0.1 dex in a range of metallicities and almost three orders of magnitude in the sSFR. We explore the consequences of the L13 model on the mass-weighted metallicity in the stellar component of the galaxies. We find that the stellar average metallicity lags 0.1-0.2 dex behind the gas-phase metallicity relation, in agreement with the data. (abridged)Comment: 14 pages, 6 figures, MNRAS accepte

    The properties of Brightest Cluster Galaxies in the SDSS DR6 adaptive matched filter cluster catalogue

    Full text link
    We study the properties of Brightest Cluster Galaxies (BCGs) drawn from a catalogue of more than 69000 clusters in the SDSS DR6 based on the adaptive matched filter technique (AMF, Szabo et al., 2010). Our sample consists of more than 14300 galaxies in the redshift range 0.1-0.3. We test the catalog by showing that it includes well-known BCGs which lie in the SDSS footprint. We characterize the BCGs in terms of r-band luminosities and optical colours as well as their trends with redshift. In particular, we define and study the fraction of blue BCGs, namely those that are likely to be missed by either colour-based cluster surveys and catalogues. Richer clusters tend to have brighter BCGs, however less dominant than in poorer systems. 4-9% of our BCGs are at least 0.3 mag bluer in the g-r colour than the red-sequence at their given redshift. Such a fraction decreases to 1-6% for clusters above a richness of 50, where 3% of the BCGs are 0.5 mag below the red-sequence. A preliminary morphological study suggests that the increase in the blue fraction at lower richnesses may have a non-negligible contribution from spiral galaxies. We show that a colour selection based on the g-r red-sequence or on a cut at colour u-r >2.2 can lead to missing the majority of such blue BCGs. We also extend the colour analysis to the UV range by cross-matching our catalogue with publicly available data from Galex GR4 and GR5. We show a clear correlation between offset from the optical red-sequence and the amount of UV-excess. Finally, we cross-matched our catalogue with the ACCEPT cluster sample (Cavagnolo et al., 2009), and find that blue BCGs tend to be in clusters with low entropy and short cooling times. That is, the blue light is presumably due to recent star formation associated to gas feeding by cooling flows. (abridged)Comment: 15 pages, 15 figures, submitted to MNRA

    On the relation between specific star formation rate and metallicity

    Get PDF
    In this paper, we present an exact general analytic expression Z(sSFR)=yZΛ(sSFR)+I(sSFR)Z({\rm sSFR})={y_Z \over \Lambda ({\rm sSFR})}+I({\rm sSFR}) linking the gas metallicity Z to the specific star formation rate (sSFR), which validates and extends the approximate relation put forward by Lilly etal. (L13), where yz is the yield per stellar generation, Λ(sSFR) is the instantaneous ratio between inflow and star formation rate expressed as a function of the sSFR and I is the integral of the past enrichment history, respectively. We then demonstrate that the instantaneous metallicity of a self-regulating system, such that its sSFR decreases with decreasing redshift, can be well approximated by the first term on the right-hand side in the above formula, which provides an upper bound to the metallicity. The metallicity is well approximated also by ZL13id=Z(sSFR)=yZ1+η+sSFR/νZ_{{{\rm L13}}}^{{\rm id}}=Z({\rm sSFR})={y_Z \over 1+\eta +{\rm sSFR}/\nu} (L13 ideal regulator case), which provides a lower bound to the actual metallicity. We compare these approximate analytic formulae to numerical results and infer a discrepancy <0.1 dex in a range of metallicities (log(Z/Z⊙)∈[−1.5,0]{\rm log} (Z\mathrm{/Z}_{{\odot }})\in [{-}1.5,0], for yz ≡ Z⊙=0.02) and almost three orders of magnitude in the sSFR. We explore the consequences of the L13 model on the mass-weighted metallicity in the stellar component of the galaxies. We find that the stellar average metallicity lags ∼0.1-0.2 dex behind the gas-phase-metallicity relation, in agreement with the dat

    The properties of brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 6 adaptive matched filter cluster catalogue

    Get PDF
    We study the properties of brightest cluster galaxies (BCGs) drawn from a catalogue of more than 69 000 clusters in the Sloan Digital Sky Survey (SDSS) Data Release 6 based on the adaptive matched filter technique. Our sample consists of more than 14 300 galaxies in the redshift range 0.1-0.3. We test the catalogue by showing that it includes well-known BCGs which lie in the SDSS footprint. We characterize the Szabo et al. catalogue content in terms of BCGs r-band luminosities and optical colours as well as their trends with redshift. We find that the BCG luminosity distribution is close to a Gaussian with mean −22 mag and dispersion 0.54 mag. The mean has a redshift evolution broadly consistent with pure aging of the galaxies. Richer clusters tend to have brighter BCGs (mean −22.5 mag), however less dominant than in poorer systems. In particular, we define and study the fraction of blue BCGs, namely those that are likely to be missed by either colour-based cluster surveys and catalogues, as shown by a direct comparison to maxBCG clusters that are matched in the Szabo et al. catalogue. The overall fraction of blue BCGs goes from ∼5 per cent in the redshift range 0.1-0.2 to ∼10 per cent in the redshift bin 0.2-0.3, with the average over the whole sample of ∼8 per cent. We estimate the possible contamination due to blue outliers at the 1-2 per cent level, while errors on the photometric redshift may lead to an erroneous classification of >0.5 per cent of actual red BCGs as blue. When considering only galaxies with spectroscopic redshift available and for clusters above a richness of 50 - where the catalogue is more than 85 per cent complete - our conservative estimate of the blue fraction is 1-6 per cent (at 99.6 per cent confidence). A preliminary morphological study suggests that the increase in the blue fraction at lower richnesses may have a non-negligible contribution from spiral galaxies. Finally, we cross-matched our catalogue with the ACCEPT cluster sample, and find that blue BCGs tend to be in clusters with low entropy and short cooling times. That is, the blue light is presumably due to recent star formation associated to gas feeding by cooling flow
    • …
    corecore