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ABSTRACT
In this paper, we present an exact general analytic expression Z(sSFR) = yZ

�(sSFR) + I (sSFR)
linking the gas metallicity Z to the specific star formation rate (sSFR), which validates and
extends the approximate relation put forward by Lilly et al. (L13), where yz is the yield
per stellar generation, �(sSFR) is the instantaneous ratio between inflow and star formation
rate expressed as a function of the sSFR and I is the integral of the past enrichment history,
respectively. We then demonstrate that the instantaneous metallicity of a self-regulating system,
such that its sSFR decreases with decreasing redshift, can be well approximated by the first
term on the right-hand side in the above formula, which provides an upper bound to the
metallicity. The metallicity is well approximated also by Zid

L13 = Z(sSFR) = yZ

1+η+sSFR/ν
(L13

ideal regulator case), which provides a lower bound to the actual metallicity. We compare
these approximate analytic formulae to numerical results and infer a discrepancy <0.1 dex
in a range of metallicities (log(Z/Z�) ∈ [−1.5, 0], for yz ≡ Z� = 0.02) and almost three
orders of magnitude in the sSFR. We explore the consequences of the L13 model on the
mass-weighted metallicity in the stellar component of the galaxies. We find that the stellar
average metallicity lags ∼0.1–0.2 dex behind the gas-phase–metallicity relation, in agreement
with the data.

Key words: ISM: abundances – galaxies: abundances – galaxies: evolution – galaxies: forma-
tion – galaxies: high-redshift.

1 IN T RO D U C T I O N

The evolution of the metallicity in galaxies constrains the history of
the gas accretion relative to the star formation, as well as the relative
importance of outflows. As such, it has been extensively studied at
different cosmic epochs. Whilst the full stellar metallicity distribu-
tion (SMD) is available only for a few selected nearby galaxies,
including the Milky Way and its components, average metallicities
in the stars and in the gas of star-forming regions are available for
many more objects at different cosmic epochs (O’Connell 1976;
Lequeux et al. 1979; Tremonti et al. 2004; Maier et al. 2005, 2006;
Savaglio et al. 2005; Erb et al. 2006a,b; Gallazzi et al. 2006; Cid
Fernandes et al. 2007; Maiolino et al. 2008; Panter et al. 2008;
Mannucci et al. 2009; Sommariva et al. 2012; Zahid et al. 2012;
Leja et al. 2013, and references therein). These observations have
established that, at any redshift z < 4, the most massive galaxies
are the most metal rich in both their gas and stellar components.
Moreover, at fixed mass, the gas metallicity of star-forming objects
decreases with increasing redshift (Erb et al. 2006a,b; Maiolino
et al. 2008; Mannucci et al. 2009; Mannucci, Salvaterra & Campisi
2011; Richard et al. 2011; Yuan, Kewley & Richard 2013).

� E-mail: axp@astro.ox.ac.uk

Among the many theoretical attempts to understand the drivers of
such relations, analytical chemical evolution models appeal either to
a decreasing importance of outflows (e.g. Garnett 2002; Tremonti
et al. 2004; Spitoni et al. 2010, and/or differential winds1, e.g.
Dalcanton 2007; Recchi et al. 2008) or to an increase in the star
formation efficiency (Dalcanton 2007; Spitoni et all. 2010; Peeples
& Shankar 2011), a variation in the yield [via a flattening of the
initial mass function (IMF); e.g. Köppen, Weidner & Kroupa 2007]
or an increase in the fraction of re-accreted metals (Davé, Finlator &
Oppenheimer 2012), with galactic mass, as possible explanations. It
is worth pointing out that, in many cases, these models are adopted
to interpret the data at a single epoch. On the other hand, galaxy
formation numerical experiments, such as cosmological simulations
and semi-analytical models, despite qualitatively matching the z

∼ 0 relation, do not reproduce its slope (e.g. Pipino et al. 2009)
and generally suffer from overpredicting the metallicity of high-
redshift star-forming galaxies (see, e.g., the discussion in Maiolino
et al. 2008, and references therein; Sakstein et al. 2011; Yates et al.
2012).

More recently, a new dimension was added to the observational
picture, with studies suggesting that, globally, the gas metallicity Z

1 Namely the outflows in which the ejection of some chemical species is
enhanced with respect to others.
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of z ∼ 0 galaxies depends also on the (specific) star formation rate
(SFR): at a fixed galaxy mass, higher metallicities correspond to
a lower star formation activity (e.g. Ellison et al. 2008; Mannucci
et al. 2010, but see e.g. Yates et al. 2012). Furthermore, there is
empirical evidence suggesting the local nature of such mass–SFR–
Z relation (Rosales-Ortega et al. 2012), and the question becomes
as to whether the Z = Z(M, SFR) relation is redshift independent;
that is, if high-redshift galaxies populate the extrapolation of the
so-called z ∼ 0 fundamental metallicity relation, that can either be
a surface in the mass–SFR–metallicity space (Mannucci et al. 2010)
or a plane (Lara-López et al. 2010, 2013) out to z ∼ 2, or even z = 3
(when accounting for changes in the ionization parameter; Cullen
et al. 2014; Nakajima & Ouchi 2013). Such a debate is lively and far
from being set (see e.g. Richard et al. 2011; Christensen et al. 2012;
Cresci et al. 2012; Niino 2012; Wuyts et al. 2012; Belli et al. 2013;
Henry et al. 2013; Stott et al. 2013; Zahid et al. 2013; Troncoso
et al. 2014). However, irrespective of the final answer, it highlights
the importance of fully and simultaneously addressing galaxy evo-
lution in terms of mass–metallicity and mass–SFR relations and
their evolution with redshift. It offers an independent test-bed to the
above-mentioned analytic chemical evolution models and provides
new constraints to the increasing body of theoretical works (e.g.
Bouché et al. 2010; Dutton, van den Bosch & Dekel 2010; Lilly
et al. 2013, L13, and references therein) aimed at explaining the
existence and the evolution of the SFR–mass relation (e.g. Daddi
et al. 2007; Elbaz et al. 2007; Noeske et al. 2007; Pannella et al.
2009; Oliver et al. 2010) and/or the cosmic run of the specific SFR
(sSFR) with simple models for the galaxy growth.

In particular, L13 show that the z < 2 evolution of the sSFR
of galaxies may be controlled by the cosmological infall of gas,
through the regulating action of the gas reservoir via a Schmidt
(1959) linear star formation law. Such a simple model broadly
explains at the same time the cosmic evolution of the sSFR (e.g.
González et al. 2010; Stark et al. 2013, and references therein)
and the stellar-to-halo mass ratio (e.g. Moster et al. 2010). More
importantly, the L13 model has the additional appealing property
of offering an explanation both to the evolution of the gas phase
metallicity and to its scatter at a given epoch by directly linking it to
variations in the sSFR with just one equation. That is, the sSFR both
enters as a second parameter in setting the metallicity and gives an
explanation to the epoch-invariant fundamental metallicity relation,
thereby linking the epoch dependence and the SFR dependence of
the mass–metallicity relation.

At a fixed epoch, the slope of the mass–metallicity relation is
then given by the variation of both the star formation and outflow
efficiencies with stellar mass (see also Calura et al. 2009). In L13,
however, the instantaneous gas phase metallicity is replaced with the
value derived considering the system in equilibrium (i.e. imposing
dZ/dt = 0) for both an ideal case of regulator (steady state at
constant gas fraction) and a case in which the gas fraction is slowly
changing.

Other analytic models do not either make explicit the sSFR
dependence of metallicity (e.g. Dayal, Ferrara & Dunlop 2013) or,
despite their similarity to L13, adopt a different notion of ‘steady-
state’ (e.g. constant gas mass evolution; e.g. Davé et al. 2012),
claiming that the temporal variation in the metallicity for a given
galaxy is driven by the amount of metals ejected in the surrounding
medium and then re-accreted. Also in the case of Davé et al. (2012),
approximate values for the metallicity are adopted.

Given the important role of metallicity as a constraint to galaxy
formation theories and the progresses in the measurement of Z, SFR
and stellar masses at progressively higher redshifts, it is important to

derive full analytical expressions that link the metallicity evolution
to the sSFR evolution of a single galaxy for generic gas accretion
and outflow histories. If correct, the above-mentioned approximated
formulae (e.g. Davé et al. 2012; L13) could be then re-derived
from such general solutions as special cases and applied in suitable
regimes of the galaxy growth.

The aim of this paper is thus to validate and extend the L13
relation between Z and sSFR. To this end, we revisit the L13 equa-
tions, link them to analytical models of chemical evolution (Pagel
& Patchett 1975; Hartwick 1976; Tinsley 1980; Twarog 1980;
Matteucci & Chiosi 1983; Clayton 1988; Edmunds 1990; Köppen
& Edmunds 1999; Matteucci 2001; Spitoni et al. 2010) and derive
a more general relation in which the metallicity Z is an explicit
function of the sSFR for arbitrary gas inflow and outflow histo-
ries. We then derive simplified relation for the closed box model,
the steady state evolution and the L13 model as special cases of
the general solution. Furthermore, we study the range of validity
and the goodness of the L13 approximation by comparing these re-
sults to a direct numerical integration of the same equations as well
as to the predictions of full numerical chemical evolution models,
which relax some of the assumptions done to make the problem
analytically tractable.

Finally, we test the predictions of the L13 model for the evolution
of the mass–stellar metallicity relation with redshift in the specific
L13 case and compare it to recent observations (Sommariva et al.
2012).

The L13 model and some of its equations are briefly summarized
in Section 2 with the double aim to both set the stage, introducing
the relevant physical quantities and symbols, and to link it to the
standard equation of analytic chemical evolution model. In Sec-
tion 3, general relations between gas-phase metallicity and sSFR
are presented and their special cases discussed. L13 model predic-
tions regarding the stellar average metallicity and its comparison to
data are presented in Section 4. Finally, in Section 5, we summarize
and discuss our main conclusions.

2 TH E L 1 3 M O D E L IN TH E F R A M E WO R K O F
A NA LY T I C C H E M I C A L E VO L U T I O N

2.1 The regulation of the baryonic content in L13

L13 suggest that the average galaxy evolution can be broadly
explained by very simple physics, as it is determined by the host
halo accretion rate and regulated by the SFR ψ , which is directly
proportional to the interstellar medium (ISM) mass (the ‘gas reser-
voir’) via the star formation efficiency ν (see Table 1), that we will
keep constant with time. The model also accounts for the action of
SFR-related (e.g. supernova-driven) galactic winds.

Let us define μ as the gas fraction Mgas/Mtot, with Mtot = M∗ +
Mgas. This implies that the sSFR can be written as (equation 7 in
L13)2

sSFR = ψ/M∗ = ν Mgas/M∗ = ν
μ

1 − μ
. (1)

The system accretes gas via inflows, with a given accretion rate
Ṁacc. More specifically, the L13 model assumes that haloes grow
according to average prescriptions given by fit to numerical simu-
lations (e.g. equation 3 in L13 and references therein). Baryons are

2 See the appendix for a more general version when a Schmidt law with
exponent 1 + x is adopted.
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Table 1. Input parameters.

This paper L13 Remarks

Baryonic accretion rate Ṁacc � Given by cosmological background
SF efficiency ν ε Constant (may vary with galactic mass and/or cosmic time)

Gas-to-total fraction μ νgas –
Gas-to-star fraction f μ –

Infall rate-to-SFR ratio � 1/fstar Varies with time
Outflow rate-to-SFR ratio η λ/(1 − R) May vary with time

Yield per stellar generation yz y Constant
Metallicity of infalling gas ZA Z0 Constant

Returned fraction R R Constant

accreted proportionally to the dark matter via the universal baryon
fraction. A fraction fgal of the accreted baryons can penetrate into
the actively star-forming region and be transformed into stars, as
well as possibly ejected by winds.

The simplest (ideal) case of such a regulator has the feature
of setting the sSFR equal to the specific baryonic accretion rate
sMIRB. L13 (cf. their fig. 3) further show that, for any sudden and
instantaneous variation in sMIRB, the sSFR adjusts to a value that
coincides with sMIRB on a time-scale set by the shorter among 1/ν

and 1/sSFR. The sSFR tracks the sMIRB also if this is steadily
increasing with time. Only when the variation dsMIRB/dt < 0 and
occurs on a time-scale which is faster than 1/ν, then the sSFR
decrease is slower than the drop in the sMIRB.

Our study will focus on the metallicity–sSFR dependence. There-
fore, we do not further discuss the dark matter host halo growth.
The cycle of inflow-star formation-outflow that we discuss below
pertains to the baryons within the galaxy; therefore, our conclusions
do not depend on the chosen fgal either, with the assumption that
this value is not affected by, e.g., the galactic SFR or the outflows.

Below, we briefly present the relevant equations of L13’s model
set-up in a slightly different way in order to link the L13 equation and
symbols to the terms that are more common in chemical evolution
studies and with the aim of summarizing some of L13’s key results
to the reader, setting the stage for the present study. To this purpose,
in Table 1, we summarize the main physical quantities and the
symbols adopted in both this work and in L13.

2.2 Basic equations for the evolution of gas
mass and metallicity

As in L13, in this paper, we follow the evolution of a galaxy made
of gas, assumed to be in a single phase and well mixed at any time,
with initial mass Mgas, 0, and stars, whose initial mass is set to zero.
The evolution of the system can be studied solving an array of
equations representing the conservation of the total, the gas and
the metal mass in presence of source terms (infall, outflow and
nucleosynthesis).

Before doing it, it is convenient to introduce the variables �(t)
and η(t), defined in order for the infall and outflow rate to be cast in
terms of the SFR ψ(t). Namely the outflow rate W(t) is defined as
(Matteucci & Chiosi 1983)

W (t) = η(t)(1 − R)ψ(t), (2)

and it is justified by the observational evidences of ubiquitous winds
in star-forming galaxies (e.g. Weiner et al. 2005; Bordoloi et al.
2011, 2013; Newman et al. 2012), with mass loading factors com-
parable to the SFR. Since the same loading factor, within the uncer-
tainties, is observed at different redshifts in galaxies with different

SFRs (cf. Newman et al. 2012, and references therein), for a first-
order approximation it is reasonable to assume that η ∼ const in
galaxies with SFR-driven winds. Therefore, in the following, we
will present both examples and special cases assuming that η is
strictly constant in time. On the other hand, in deriving the full so-
lution Z = Z(sSFR), we will let η arbitrarily vary with either time
or sSFR.

The infall rate is given by

Ṁacc = �(t)(1 − R)ψ(t). (3)

The term �(t) was introduced and set to a constant value by
Matteucci & Chiosi (1983), to make the problem tractable ana-
lytically. The same time-invariant definition (i.e. equation 3 with
� = const) is adopted in many other papers in the literature. In our
approach, instead, the equation above is actually inverted and solved
for �(t), which will provide a way for parametrizing how the SFR
instantaneously responds to changes in the known accretion rate.
Therefore, in this case (and in L13’s formulation), �(t) ∝ Ṁacc

ψ(t) is a
function of time and becomes the instantaneous measure of the ratio
between the gas accretion rate (given by the cosmological model)
and the SFR.

The returned fraction by stars R is defined by invoking the in-
stantaneous recycling approximation (IRA; Schmidt 1963) as

R =
∫ ∞

1 M�
(m − mR)φ(m) dm, (4)

where φ(m) is the IMF and mR is the mass of the stellar remnant. The
IMF is assumed constant in time. The yield per stellar generation is
then defined as (Tinsley 1980)

yZ = 1

1 − R

∫ ∞

1 M�
mpZ,mφ(m) dm, (5)

where pZ, m is the fraction of newly produced and ejected metals by
a star of mass m. Finally, ZA is the metallicity of the infalling gas.

Under these assumptions and definitions, the equations that regu-
late the evolution of the system in L13 become exactly those used by
analytical models for chemical evolution with inflows and outflows
(e.g. Pagel & Patchett 1975; Hartwick 1976; Tinsley 1980; Twarog
1980; Edmunds 1990; Köppen & Edmunds 1999; Matteucci 2001;
Spitoni et al. 2010),⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dMtot
dt

= (�(t) − η(t))(1 − R)ψ(t)

dMgas

dt
= (�(t) − η(t) − 1)(1 − R)ψ(t)

dZ·Mgas

dt
= (1 − R)ψ(t)[�(t)ZA + yZ − (η(t) + 1)Z]

, (6)

with the only difference that, in L13 and in this paper, � and
η may vary with time, not least as the system increases its mass.
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Also, both the star formation law and the accretion rate of the galaxy
are specified, whereas in standard analytical chemical evolution
models, it is customary to express metallicity variations as a function
of μ without any explicit dependence on both SFR and Ṁacc.

Combining the first two equations in the array (6), L13 (see their
equation 12) came to the following link between �(t) and sSFR:

�(t) = sSFR(t)/ν + η(t) + 1 + 1

(1 − R)ν

dlnf

dt
, (7)

where f = Mgas/M∗ = sSFR/ν. Equation (15) that we discuss be-
low is a special case of this general relation.

2.3 The gas metallicity in the L13 approach

Rather than explicitly solving equation (6) also for the metallicity,
L13 derive approximate solutions by assuming the system to be in
equilibrium. That is, by solving the third equation in the array (6)
by imposing dZ/dt = 0. Indeed, L13 derive two slightly different
approximations for the metallicity: one that holds in the case of
an ideal regulator (i.e. with the gas fraction identically constant in
time), and one that holds for the more realistic non-ideal regulator
(equations 26 and 29 in L13). In the formalism of this paper, these
two approximations become

Zid
L13 ≡ ZA + yz

sSFR/ν + η + 1
,

ZL13 ≡ ZA + yz

sSFR/ν + η + 1 + 1
(1−R)ν

dlnf

dt

= ZA + yz

�(t)
, (8)

respectively. We remind the reader that in L13 η = const. Such sim-
ple expressions for the metallicity have non-trivial consequences.
In the first place, the variation in the sSFR with cosmic epoch will
drive a change in the metallicity of a given ‘average’ galaxy.

Secondly, at any given time, two galaxies with the same stellar
mass may have different metallicities, according to the values of
the sSFR, η, ν, f that characterize them. In the framework of this
analytical model, such a difference in metallicity is caused by the
different ‘equilibrium’ gas fraction in the two galaxies (or equiva-
lently, their sSFR, if the other terms in the denominator are smaller).
That is, a mass–metallicity–SFR relation is naturally predicted by
the L13 model. More quantitatively, at a given epoch, two galaxies
i = 1, 2 with given stellar masses Mi will have the ratio of their
metallicities given by (assuming ZA = 0, η = 0, ideal regulator
case)

ZL13,1/ZL13,2 = ν1M1/ν2M2 (SFR2 + M2 · ν2)/(SFR1 + M1 · ν1)

= M1/M2 SFR2/SFR1 H (sSFRi , νi(Mi)) ,

that is,

log(Z1/Z2) = log(M1/M2) − log(SFR1/SFR2) + log(H ) .

3 TH E M E TA L L I C I T Y E VO L U T I O N

The set of equations presented in array (6) with suitable initial
conditions are sufficient to characterize the galaxy evolution in
terms of its gas mass, gas fraction and metallicity evolution, by
direct integration over time. These solutions can then be transformed
into an sSFR dependence via the sSFR–μ (equation 1) and sSFR–�

(equation 7) relations. This will be the core and novel aspect of this
paper. In particular, we will derive two versions of a more general
solution of the equations which include among their terms both the

L13 approximations (Zid
L13, ZL13). We will then show under which

conditions and how quickly the other terms in the solutions become
negligible and, thus, L13 approximations become good solutions.
In the final part of this section, we will compare the full analytical
solution to the approximate L13 solution, and both to numerically
derived trends, to test the range of validity and the accuracy.

3.1 General solution: Z as a function of time and sSFR

Let us take a step back and start by recalling the formal general solu-
tions for the gas and the metallicity evolution with the explicit time
dependence that can be derived by the same set of three equations
(6) if one leaves the accretion rate unspecified and further assumes
η = const (in analogy with previous works and L13):

Mgas = e−ν(1−R)(1+η)t ×
(

Mgas,0 +
∫ t

0
eν(1−R)(1+η)t ′Ṁacc(t ′) dt ′

)

(9)

and

Z = yzν(1 − R)e−ν(1−R)
∫ t

0 �(t ′)dt ′

×
∫ t

0
eν(1−R)

∫ t ′
0 �(t ′′)dt ′′

(
1 + �(t ′)ZA(t ′)

yz

)
dt ′ (10)

(see also Recchi et al. 2008, for the solution with ZA = 0). For
simplicity, we assumed that Z(0) = 0 and that ν and η are constant
with time. We also assumed no variations in the IMF (and hence
in the yield yz) with either time or mass. These formulae can be
obtained as standard solutions of the differential equations of the
array (6) in a manner that is similar to what we show in Section 3.3
(equation 19 onwards); therefore, we do not repeat the derivation
here.

Assuming that ZA = const, substituting �(t) in equation (10)
with the expression given by equation (7) and integrating the result-
ing expression by parts, it follows that

Z = ZA + yzν(1 − R)

⎛
⎝ 1

ν(1 − R)(1 + η + sSFR/ν)

− e−ν(1−R) ((1+η)t+∫ t
0 sSFR(t ′)/νdt ′)

ν(1 − R)(1 + η + sSFR(0)/ν)
sSFR(0)/ν

− (1 + η) e−ν(1−R) ((1+η)t+∫ t
0 sSFR(t ′)/νdt ′)

sSFR/ν

×
∫ t

0

eν(1−R) ((1+η)t′+∫ t′
0 (t′′)/νdt′′)

ν(1 − R)(1 + η + sSFR/ν)2

dsSFR/ν

dt′
dt ′

⎞
⎠

=: (I1 − I2 − I3) ,

where

I1 ≡ Zid
L13 = ZA + yz

1 + η + sSFR/ν
. (11)

Despite two terms in the addition (I2, I3 – which incorporate the
integral of the accretion history), have still the explicit dependence
on time, we made an important step forward as we have the first
term (Zid

L13) depending only on the sSFR. As we will see below,
Zid

L13 is also a bounding value to the true metallicity. To understand
the meaning of I1 = Zid

L13 in this context, we need to look first at
the following special case of the general solution: the evolution at
constant gas fraction.
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3.2 Special case I – evolution at constant gas fraction

If the galaxy is constantly in an accretion-dominated regime, that
is, if we add the assumption that �, η are both constant with time
and that � − η >1, then Mtot increases with time. The gas fraction
evolves as (e.g. equation 9 in Recchi et al. 2008)

μ = μsteady + fM

� − η
, (12)

where

μsteady = � − η − 1

� − η
(13)

and

fM = Mgas,0/Mtot(t) . (14)

Therefore, the gas fraction tends to the value given by μsteady. This is
what we refer to as steady state, namely an evolution at a constant
gas fraction, whose value is set by the constant � − η. In this
particular case, it is trivial to combine equations (1) and (13) to
show that the sSFR can be expressed as

sSFR/ν = � − η − 1 . (15)

We note that the convergence towards the asymptotic values is
faster for larger ν (the shorter the star formation time-scale) and/or
larger �.

When the steady state is attained, with �, η and the sSFR constant
in time, the solution for the metallicity becomes much simpler

Ztrue
ss = ZA + yz

�

⎛
⎝1 − e−ν(1−R)�t

⎞
⎠

→ ZA + yz

�
= ZA + yz

1 + η + sSFR/ν
(16)

at times t > 1/ν > 1/(ν(1 − R)�).
That is, the metallicity settles to the constant value given by Zid

L13.
As such, the asymptotic regime for the equilibrium metallicity (i.e.
when dZ/dt = 0) is used in L13 as the value for the metallicity in the
case of the ideal regulator (i.e. when the gas fraction stays constant).
This result further clarifies the meaning to the Zid

L13 term (equation
11) contributing to the metallicity in the general equation. It is in
fact a ‘steady-state-like’ term, determined by the current value of
the sSFR.

We also derive another interesting result, probably overlooked
in the recent literature on the sSFR evolution at high redshift.
In particular, equation (15) implies that one can easily model a
galaxy evolving at constant sSFR as the result of an accretion-
dominated regime where � − η − 1 = const > 1. The results
shown in this section imply that, at the same time, the metallicity
would not evolve (assuming ZA = const). Since Z is observed to
decrease at z > 2, this is another reason to suspect that the sSFR is
also not constant at z > 2 (see, e.g., Stark et al. 2012).

3.3 Integrating the metallicity equation over the sSFR

One can alternatively set up the differential equation for the metallic-
ity variation as a function of the sSFR as the time variable. With the
aim to derive a very general solution, from this section onwards,
not only we keep considering � as a function of time (and sSFR),
but also we relax the assumption of η = const with both time and
sSFR. In particular, we note that equation (7) can be rewritten as

dsSFR

dt
= ν(1 − R)sSFR(�(t) − η(t) − 1 − sSFR/ν) . (17)

Combining the third equation with the second one in the array (6),
one can write

dZ

dt
= (1 − R)ν[�(t)ZA + yZ − �(t)Z] . (18)

Dividing equation (18) by equation (17), one can derive an expres-
sion for dZ/dsSFR. Some algebra then leads us to the following
differential equation for the metallicity:

dZ

dsSFR
+ F (sSFR)Z = yzG(sSFR) , (19)

where

G(sSFR) =
1 + ZA�

yz

sSFR/ν(� − η − 1 − sSFR/ν)
(20)

and

F (sSFR) = 1
1
�

+ ZA

yz

G(sSFR) . (21)

This equation has the following formal solution:

Z = yze
− ∫ x

x0
F (x′) dx′

∫ x

x0

e
∫ x′

x0
F (x′′) dx′′

G(x ′) dx ′ , (22)

where x = sSFR/ν. Integrating by parts, with the further assump-
tion that ZA = const, the solution can be written as

Z = ZA + yz

�(x)
− yze

− ∫ x
x0

F (x′)dx′
∫ x

x0

e
∫ x′′

x0
F (x′)dx′

�(x ′′)2

d�

dx ′′ dx ′′ . (23)

This new way to solve for the metallicity uses the sSFR itself as
the time variable. This formal analytic solution is similar to equation
(11)3, with the difference that here we make explicit the contribution
by the instantaneous value of �(t) and η(t) as if it were in the steady
state, that is,

Zinst
ss = ZA + yz

�
= ZA + yz

sSFR/ν + η + 1 + 1
(1−R)ν

dlnf

dt

≡ ZL13 , (24)

namely the value of the metallicity adopted in L13 for the ‘non-ideal
regulator’ (i.e. gas fraction slowly varying in time). The other term
in the addition is the ‘resistance’ to move to the new steady state,
−Ĩ2, given by the past chemical evolution history. With this version
of the general solution for the metallicity, we made explicit the fact
that ZL13 is one of the terms that contribute to the actual metallicity
of the galaxy in the general case. Equation (23) readily tells us that,
when Ĩ2 is small (as in the L13 model), the evolution of galaxies can
be approximated by a sequence of steady state solutions with lower
equilibrium gas fractions (lower sSFR) and higher metallicities.
We quantify this statement in the next section.

3.4 Special case II – accretion rate slowly changing
with time (L13)

Having derived general formulae linking the metallicity to the sSFR
for arbitrary gas accretion histories (equations 11 and 23), we can
now discuss the L13 approximations. In order to move from the
general equations discussed above to the L13 special cases, we sim-
ply need to add the assumption – explicitly made in L13 – that
the sSFR slowly changes in time in order to better quantify the
other terms (I2, I3, Ĩ2) in both equations (11) and (23). In particular,

3 The formal derivations of the solutions are exactly the same.
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we now discuss the case in which the sSFR slowly decreases fol-
lowing the cosmological decrease in sMIRB. As a matter of fact,
similar considerations can be done for a slowly increasing sSFR,
driven by, e.g., an increasing accretion rate; therefore, we do not
further discuss this specific case and refer the reader to L13 (cf.
their fig. 3) for some examples on how quickly the sSFR responds
to changes in either direction in the accretion rate. For simplicity,
we also assume that ZA = 0, since it only adds a constant offset.

For a smoothly declining accretion history, it follows that

(1) as discussed in L13 (their equation 39), dlnf

dt
is small, but

finite and negative, hence

1

sSFR/ν + η + 1 + 1
(1−R)ν

dlnf
dt

>
1

sSFR/ν + η + 1
. (25)

Therefore, Zid
L13 < ZL13. Moreover

(2) Ĩ2 > 0. Therefore, Z < ZL13.
(3) Also, I2 falls off exponentially. Therefore, I2 � 0, for practical

purposes, whereas −I3 > 0, as the time derivative of the sSFR is
negative. Therefore, Z > Zid

L13.

By combining these results together, we derive that the true value
of the metallicity is always within the range [Zid

L13, ZL13]. This shows
that, for a large class of models with the sSFR slowly decreasing
in time, rather simple expressions (equations 11–24) can be used
to bracket the actual gas-phase metallicity. In other words, for Ṁacc

decreasing with time, the true metallicity will be bound between
Zid

L13 (the steady-state-like metallicity set by the current value of
the sSFR, the ideal regulator case in L13) and ZL13 (the steady-
state metallicity set by the current value of �(t), in L13 this is
the formula used when the gas fraction is allowed to vary in the
non-ideal regulator case).

The next step is to assess the goodness of the approximation of
using the steady-state(-like) metallicities (i.e. either Zid

L13 or ZL13)
as an estimate of the current metallicity for these systems. This will
be the topic of the next section. Here, we conclude by highlight-
ing the qualitative explanation. In the chemical evolution literature
terms, the L13 smoothly evolving model is equivalent to a system
in which the metallicity varies in response to a slowly changing
�(t). Among others, the behaviour of Z in the varying �(t) case,
has been also graphically and qualitatively discussed by Köppen &
Edmunds (1999). When, e.g., �(t) slowly decreases with time, the
system evolves along the locus of the steady-state solutions on the
μ−Z plane, moving towards lower gas fractions and higher metal-
licities. That is, from the steady state set by �(t − dt) and η(t − dt)
to a new steady state [given by the current value of �(t) and η(t)],
where the new μsteady is lower than the old one, whereas Zsteady

increases (Köppen & Edmunds 1999, their figs 5 and 6).

3.4.1 The accuracy of the L13 approximation: comparison
to full analytic solutions

If one further adopts the initial condition μ = 1 (no stars), then
x0 = sSFR(0)/ν diverges. Therefore, we can assume x0 = ∞ in
equation (23).

In L13, the sSFR decreases with time, driven by a decrease in
Ṁacc. The variation is slow and at late times | dsSFR

dt
|/sSFR  1;

this implies also a very small variation in the gas fraction (μ or
equivalently f ). Therefore, there exists an epoch t1 where sSFR/ν =
x1  1 + η and � � 1 + η. This implies that d�

dx
→ 0 when t > t1

(x < x1).

Figure 1. Evolution of the metallicity as a function of the sSFR for galaxies
evolving according to the L13 model. The solid line is the evolution given
by the numerical integration of equation (10), whereas the dashed line is the
metallicity approximated as Z ∼ Zid

L13 (equation 11, see text). Finally, the
dotted line gives the metallicity approximated by ZL13 (equation 23).

As a consequence, we can write

Ĩ2 =
∫ x

x0

e
∫ b

∞ F (a)da

�(b)2

d�

db
db �

∫ x1

∞

e
∫ b

∞ F (a) da

�(b)2

d�

db
db ,

that is, Ĩ2 is effectively constant at x < x1 (i.e. at late times).
At the same time, the exponent of the factor in front of Ĩ2 grows

in absolute value; therefore, the second term in equation (23) is

e−const/x × Ĩ2 → 0.

In this case, equation (23) trivially reduces to

Z � yz

�(x)
≡ ZL13 . (26)

Similarly, I3 is small because it has an exponentially declining
factor and in the integral we have | dsSFR/ν

dt ′ |  (1 + η + sSFR/ν)2.
We already discussed that I2 has a fast exponential decline. There-
fore, also the ‘corrections’ given by I2 and I3 to the metallicity in
equation (11) are small.

To reinforce our findings, in Fig. 1, we compare the numerical
integration of the metallicity (solid line) with these two limiting
values (dashed – Zid

L13, lower limit; dotted – ZL13, upper limit) for a
particular set of ν, yz and given gas accretion history. For the sake
of simplicity, we also arbitrarily set yz = 0.02 = Z�, η = 0 and
ν = 1 Gyr−1.

The formula Z = Zid
L13 = yz

1+η+sSFR/ν
, used by L13 for the ideal

regulator case (and ZA = 0) gives always an excellent approxima-
tion, departing from the numerical solution only by 0.1 dex at very
late stages. It is the best approximation of the true metallicity at the
highest values of the sSFR.

On the other hand, the difference Z − ZL13 is significant in the
very early phases of the evolution, when �(t) and sSFR are un-
correlated. This is however a consequence of our set-up. In fact,
assigning an initial μ = 1 leads the model to evolve by consuming
the gas mass initially present in a way that is independent from the
inflow, as a closed box. A different initial set-up might reduce the
difference between ZL13 and the actual metallicity in these early
phases. At late times, instead, in this example, ZL13 gives a very
accurate approximation of the true metallicity.

MNRAS 441, 1444–1456 (2014)



1450 A. Pipino, S. J. Lilly and C. M. Carollo

3.5 Special case III – the closed box model in terms of the sSFR

Before comparing the analytic approximate solutions to other nu-
merical models, we mention that, in the case of a model with neither
accretion nor outflows (� = η = 0, closed box approximation, also
known as the simple model), the relation between metallicity and
sSFR trivially is

Z = yzln
1 + sSFR/ν

sSFR/ν
(27)

which, at early times (high sSFR), has the following approximate
behaviour:

Z � yzν/sSFR � yzν/(1 + sSFR) (28)

which is very similar to Zid
L13 when ZA = η = 0. As the closed box

model well approximates the behaviour of a model with �(t) �= 0
at early times (high gas fraction; e.g. Köppen & Edmunds 1999),
this last equation is a good representation of the general equation
behaviour in the regime of high sSFRs.

Therefore, we can conclude that the sSFR, rather than �, seems
to be the key quantity to accurately estimate the gas metallicity of
the system in a variety of cases. The reasons lies in its close relation
to the gas fraction μ.

Also, in the closed box model, the star formation has an expo-
nential decline with time-scale τ = ν(1 − R). The results in this
section then provide a ready estimate for a self-consistent evolution
of the metallicity and sSFR for the widely adopted exponentially
decaying star formation histories.

3.6 The accuracy of the L13 approximation: comparison
to full chemical evolution models

The IRA is not a good approximation to follow a system for a long
(>1 Gyr) time, even if we focus on the total metallicity, which is
dominated by O (produced on a short time-scale) and/or on metal-
licity inferred from O lines (among others). That is, when μ 1 and
after several Gyr of evolution, the effects of metals being recycled
by low-mass stars cannot be ignored. We therefore further tested
equation (11) against the predictions of full numerical chemical evo-
lution models calibrated on the abundance pattern of the Milky Way
and the properties of local ellipticals. We refer the reader to Pipino
& Matteucci (2004), Pipino et al. (2011) and Calura et al. (2009) for
a description of these models, and to Pipino, Calura & Matteucci
(2013) for their predicted sSFRs. The comparison is shown in Fig. 2,
where the tracks in the metallicity–sSFR plane are shown for both
analytical (solid) and numerical [dashed, Milky Way (MW); dotted,
elliptical] models. In the analytical models, ν is matched to that used
in the full numerical chemical evolution simulations. For the same
reason, we set η = ZA = 0. The Z ∼ Zid

L13 approximation works well
for a wide range in sSFR, becoming less accurate at late times for
the case of the Milky Way as expected. The difference is however
less than a factor of 2, comparable to the observational uncertainty
in deriving the gas-phase metallicity. As far as elliptical galaxies are
concerned, we note that the closed box approximation (solid black
line) works better than the case with an infall with a long time-
scale (solid blue lines). This is not unexpected since these galaxies
should have formed on a short time-scale (e.g. Matteucci 1994),
or equivalently, at high sSFR (e.g. Pipino et al. 2013, and refer-
ences therein). In the numerical models, the galactic wind prevents
the star formation to occur at arbitrarily low gas fractions (hence
sSFR), whereas the ideal closed box systems proceeds with μ→ 0.
To guide the eyes, dark (light) grey areas give the typical values of

Figure 2. Evolution of the metallicity as a function of the sSFR. The dashed
line is the evolution predicted by a full numerical chemical evolution model
tuned to reproduce the Milky Way (MW) properties, whereas the dotted line
is the prediction for a model calibrated on both local ellipticals (Pipino &
Matteucci 2004) and high-redshift galaxies (Pipino et al. 2011). The solid
lines give the metallicity approximated as Z ∼ Zid

L13 (see text) for models
with accretion (blue) and closed box (black). In this illustration, ZA = η = 0,
yz = 0.01 and ν are matched to that used in the full numerical chemical
evolution models. Dark (light) grey areas give the typical values of the sSFR
observed in high-(low-)redshift galaxies, whereas the red box highlights the
sSFR values for quenched systems.

the sSFR observed in high-(low-)redshift galaxies, whereas the red
box highlights the sSFR values for quenched systems at z ∼ 0.

From this comparison, we can therefore conclude that a quasi-
steady-state evolution depicted in analytic models (as in L13) must
be typical of relatively low sSFR, disc galaxies, possibly repre-
senting the majority of the star-forming ‘main sequence’ at z < 2.
For these galaxies, the current metallicity is well approximated by
a steady-state-like value set by the current sSFR. We suggest here
that ellipticals, instead, evolve at higher sSFR for a given metallic-
ity than spiral galaxies for a given mass, in a suggestive analogy to
what happens in the [α/Fe]–[Fe/H] plane (e.g. fig. 4 in Matteucci &
Brocato 1990). That is, highly α-enhanced stellar populations are
a distinctive feature of galaxies formed with high average sSFR,
similar to those observed at z > 2 (cf. Pipino et al. 2013, see also
discussions in Peng et al. 2010, in the context of empirical models
of galaxy growth, and in Pipino et al. 2009 – their section 3.2 – in
the context of semi-analytical models of galaxy formation). Clearly,
having adopted the IRA to make the problem analytically tractable,
any abundance ratio predicted in the framework of this paper (and
in L13) will be constant in time and simply equal to the ratio of the
yields, unless one invokes selective inflows/outflows. Therefore, we
cannot predict an analytical quantitative relation between sSFR and
α/Fe ratio in the gas of a star-forming galaxy.

We stress, however, that the ‘morphology’ classes introduced in
this section simply refer to the two typical parametrizations adopted
in numerical chemical evolution simulations. Namely high ν and
quick infall are needed to reproduce the chemical abundance pattern
of present-day ellipticals, whereas smaller ν and longer accretion
histories seem to be typical of spirals. Therefore, in the context
of this paper, such ‘morphological’ classes should be understood
as useful terms for linking the L13 model (and the more general
equations presented in this paper) to special cases of standard nu-
merical models of chemical evolution. A link between the actual
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morphology of the galaxies and the L13 model is beyond the scope
of this paper.

Finally, one can exploit Fig. 2 as a diagnostic plot to readily
estimate the star formation efficiency of a given galaxy observed
at a given epoch, by simply comparing its location in the sSFR–
metallicity plane with a set of model predictions at fixed yield (IMF)
and varying ν.

As mentioned above, the IRA does not hold at time-scales compa-
rable with those of massive stars. This would have a noticeable effect
if we were dealing with the chemical abundance ratios produced by
a single stellar generation. On the other hand, it is important to note
that the metal return of a stellar generation does not depend on the
infall/outflow history.

In the earliest phases of the galaxy evolution, when the systems
are not smoothly evolving, the biggest uncertainty in the derivation
of the actual gas metallicity Z is not related to the computation
of the yield per se (and hence the assumption of the IRA), but
probably comes from the assumption of the ISM being always
homogeneous and well mixed, as there might not be enough time
for the metals to, e.g., cool down in new star-forming sites or to
travel a long distance. Equation (24) will still hold on a suitably
chosen local level, if one replaces the infall metallicity ZA with that
inflowing from neighbouring regions, and considers that the wind
term will pollute the ISM immediately around the star-forming
region. On a galaxy-wide scale, a suitable convolution of such a
local version applied to all star-forming regions would then give the
overall metallicity evolution.

4 TH E M E TA L L I C I T Y I N T H E STA R S
O F L 1 3 G A L A X I E S

4.1 The SMD

Let us start by showing the expected SMD in the framework of the
L13 model, that is, the fraction of stars per metallicity bin. In order
to illustrate the SMDs behaviour, we show in Fig. 3 a sample of
galaxies smoothly evolving according to L13. In this example, the
galaxy final masses are in the range 109−11 M�, and we assume
that the more massive the galaxy, the higher the ν (in the range 0.1–
1.3 Gyr−1). We also assume that ZA = 0 and a formation redshift,
namely when the SFR is switched on, of zF = 10. From the figure,
we can qualitatively infer an increase in the gas phase metallicity

Figure 3. Predicted SMD for arbitrary galaxy models evolving as pre-
scribed by the L13 framework. See text for details.

created by the variation in ν is mirrored by an increase in the average
stellar metallicity. In particular, the average metallicity in the most
evolved (i.e. most massive) galaxies already attained its uppermost
boundary, set by the yield (e.g. Edmunds 1990), yz = 0.02 in this
illustration. The larger star formation efficiency at high masses
makes the SMD rather sharply peaked around Z ∼ yz. Lower mass
systems are still building up their SMD, which shows a long low-
metallicity tail and a sharp cut-off at Z corresponding to the current
gas metallicity.

4.2 Gas versus stellar (average) metallicity

Since the SMD of a galaxy is rarely accessible, it is useful to dis-
cuss other diagnostics that involve, e.g., the mass-weighted stellar
metallicity, defined as (Pagel & Patchett 1975)

Z∗ = 1

M∗

∫ M∗

M0

Z(M) dM � yz

M∗

∫ M∗

M0

dM

1 + η + sSFR/ν

= yzν(1 − R)

M∗

∫ t

0
M(t ′)

sSFR(t ′)/ν
1 + η + sSFR(t ′)/ν

dt ′ , (29)

where M∗ is the total mass of stars ever born contributing to the light
at the present time, Z(M) is the metallicity in the gas forming a given
stellar generation of mass dM and we approximated the metallicity
with Zid

L13. For simplicity’s sake, we neglect the metallicity of the
infalling gas and assume η = const.

Next, we consider that

M(t ′)sSFR(t ′)(1 − R) = SFR(t ′)(1 − R) = dM

dt ′ . (30)

We make this substitution in equation (29), and we then integrate
the right-hand side by parts further assuming that M0 = M(0) ∼ 0
(and hence sSFR(0) = ∞). It follows that

Z∗ � yz

M∗
×

⎛
⎝ M∗

1 + η + sSFR(t)/ν

−
∫ t

0
M(t ′)

|dsSFR/dt ′|
ν(1 + η + sSFR(t ′)/ν)2

dt ′

⎞
⎠ , (31)

where we also consider that the sSFR decreases with time.
As for the gas metallicity solutions, it is easy to recognize a term
in equation (31) that is similar to the L13 steady state/ideal regu-
lator approximation for the current gas metallicity (equation 11 in
this paper), and another containing the integral of the past history,
whose magnitude is related to the variation of the sSFR with time.

The gas-phase metallicity is an instantaneous measure, which
should coincide with the metallicity of the stars in the metal-rich
tail of the SMD, namely the most recently formed. The average
stellar metallicity also accounts for the earlier (more metal-poor)
stellar generations, and hence it will be always lower than the gas
phase one, the difference being roughly given by the second term
in the right-hand side of equation (31).

Generally, a large difference between gas and average stellar
metallicity is found in the closed box model, which features an
exponentially decreasing star formation history. Therefore, most
of the stars have a very low metallicity (i.e. the classic G-dwarf
problem). The most extreme departure, however, is in the final
stages, where Zgas → ∞ and Z∗ → yz for μ → 0. At the opposite
end, a steady-state model (� − η > 1, with both � and η constant
in time) has the property that Z∗ = Zgas when it reaches equilibrium
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Figure 4. Difference in metallicity between galactic components and its
evolution as a function of the stellar mass. Models as in Fig. 3. Crosses,
triangles and diamonds give the position on each track at z = 0, 2 and 3,
respectively. Single galaxy measurements in the redshift bins [2.4–3[ (empty
circles) and [3,3.7] (full circles), respectively, as compiled by Sommariva
et al. (2012) are also shown.

(see also Köppen & Edmunds 1999); therefore, in this case, we have
the smallest difference at any time.

Models like the one discussed here (and in L13) have an inter-
mediate behaviour between these two cases. Qualitatively, this can
be understood as these models tend to converge to �(t) − η � 1 at
late times; therefore, both Zgas → yz for small μ and Z∗ ≤ yz (e.g.
Edmunds 1990), making the difference smaller than in the closed
box model case. In earlier phases of the evolution, the SFR is steadily
increasing in time, making the SMD strongly skewed towards
large Z. Therefore, at these early epochs, the youngest stellar gener-
ations (whose composition is the same that of the gas-phase) have
a large weight in the computation of the average stellar metallicity.
This finding implies that the evolution in the stellar metallicity in
the L13 framework can be approximated, for a ready and quick
estimate, with a relatively simple dependence on the sSFR, which
mirrors that of the gas-phase metallicity (equation 11). Equation
(31) implies the existence of a mass–metallicity–SFR relation also
in the case of the stellar metallicities, whereby galaxies evolving
on tracks at higher sSFR have lower mass-weighted stellar metal-
licities. In the light of what has been just discussed, this behaviour
should be detectable in the earliest phases, whereas it would be-
come less and less evident when the galaxy has passed the peak of
its SMD, with Z∗ approaching the yield.

More quantitatively, in the L13 model, we have
|dsSFR/dt |/sSFR � 2.2/t , namely decreasing with time and
becoming less than 1 at times larger than ∼2.2 Gyr, that is, roughly
below z = 3. This means that, for most of the galactic evolution, the
stellar metallicity is lower, but close, to the current gas metallicity.

We illustrate this in Fig. 4, where we show again the model galax-
ies presented in Fig. 3: they feature an average stellar metallicity
lagging <0.2 dex behind the gas-phase metallicity at high redshift
at any mass, where crosses, triangles and diamonds give the position
on each track at z = 0, 2 and 3, respectively. The model predictions
agree with the data (Halliday et al. 2008; Sommariva et al. 2012),
which however feature large associated uncertainties.

4.3 The mass–average stellar metallicity relation

We note that since the average metallicity in gas increases with
galactic mass, we expect L13 model to predict also a stellar mass–

Figure 5. Stellar metallicity evolution as a function of the stellar mass.
Models as in Figs 3 and 4. Crosses, triangles and diamonds give the position
on each track at z = 0, 2 and 3, respectively. The predictions for the closed
box model system with ν = 0.3 Gyr−1 are shown by the (almost vertical)
solid black line. The fit to the local observed relation (Panter et al. 2008,
thick solid line) and single galaxy measurements in the redshift bins [2.4–
3[ (empty circles) and [3,3.7] (full circles), respectively, as compiled by
Sommariva et al. (2012) are also shown.

metallicity relation. We show that it is broadly consistent with obser-
vations in Fig. 5, where we plot the evolution in the stellar metallicity
as a function of the stellar mass. Crosses, triangles and diamonds
give the position on each track at z = 0, 2 and 3, respectively.
We also show the fit to the local observed relation (Panter et al.
2008, thick maroon line) and single galaxy measurements in the
redshift bins [2.4–3[ (empty circles) and [3,3.7] (full circles), re-
spectively, as compiled by Sommariva et al. (2012).

From the model-to-data comparison point of view, we highlight
that, at z ∼ 0, the predictions for high-mass galaxies seem to match
the observations, whereas there is some tension at the low-mass
end. On the theoretical side, the slope can be further steepened by
acting on the relation between ν and the initial mass. The normal-
ization of the predicted relation can be further adjusted by acting on
the yield and of zF. These were however chosen to match both the
z ∼ 0 and the z ∼ 2 mass–metallicity relation of the gas-phase.
On the observational side, a caveat is that z ∼ 0 data include passive
galaxies, which tend to be the most massive and metal-rich galax-
ies. We can therefore expect a milder observational slope in the
mass–stellar metallicity relation, when selecting only star-forming
galaxies, in better agreement with our model. The existence of
metallicity gradients and aperture effects may further complicate
the comparison between data and models. On the other hand, while
we predict mass-weighted metallicities, the observables in ques-
tions are luminosity-weighted quantities. The difference between
luminosity-weighted and mass-weighted metallicity is negligible
in massive, old, non-star-forming galaxies (e.g. Arimoto & Yoshii
1987), which make the high-mass end of the local relation in Fig. 5.
At smaller masses, the mass-averaged Z are slightly larger than
the luminosity-averaged ones, since the latter give more weight
to the earliest low-metallicity stellar populations (see e.g. Pipino,
Matteucci & Chiappini 2006). This may explain the offset between
z = 0 predictions and observations at the low-mass end in Fig. 5.

In our models, we do see an evolution in the metallicity with
redshift at a given mass at z < 2. This is slightly (∼0.1 dex) smaller
to that predicted in the gas phase, and shown in L13 (their fig.
7). No apparent evolution is predicted between z = 2 and 3. L13
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model, however, predicts an evolution of the metallicity in this
range, and the variation can be readily estimated as follows: when
the nebular emission line correction is included sSFR(z ≥ 3) ∼
6 Gyr−1, whereas sSFR(z = 2) ∼ 2 Gyr−1 (e.g. Stark et al. 2013).
If we apply equation (11), we would infer an increase in metallicity
by a factor of ∼2 (0.3 dex) between redshift z ∼ 3 and z ≥ 2
matching the observational data (e.g. Maiolino et al. 2008). In the
same time-frame, however, given these sSFR, galaxies increase their
mass by at least a factor of 2, therefore, they move almost diagonally
in the logZgas−logMGALAXY plane. Since in these earlier phases the
average stellar metallicity tracks very well the gas metallicity, the
model predicts a similar evolution also in the logZ∗−logMGALAXY

plane. The combination of the two effects leads us to an apparent
non-evolution in the mass–metallicity plane, as galaxies move along
a given track close to the 1:1 relation. They will then move up in
metallicity at almost constant mass at z < 2, when the sSFR is such
that the stellar mass increase is milder than the change in Z.

Sommariva et al. (2012), on the basis of the same data displayed
in Fig. 5, seem to favour instead a lack of evolution at all redshifts.
It is however important to note the large observational errors and the
scatter affecting the z > 2 measurements of a few single galaxies.

For comparison, we display the evolution of a galaxy evolving
as a closed box model (solid black line) in Fig. 5. We can safely
conclude that the data strongly disfavour closed box and favour flow
through models like that of L13.

It also useful to remind the danger of comparing mass-weighted
predicted quantities to luminosity-weighted observables. This effect
is more important at high z, when galaxies feature high SFRs.
We stress again that the z ∼ 0 data mix active and passive galaxies,
whereas the high-redshift data points refer to star-forming galaxies.
Moreover, while z ∼ 0 metallicities are mostly related to the optical
part of the spectrum, in high redshift galaxies are derived by means
of UV absorption lines (Rix et al. 2004). Therefore, a direct and
robust, entirely empirical, comparison between the metallicity of
the bulk of the stars in galaxies at different redshift has yet to come.

5 D I S C U S S I O N A N D C O N C L U S I O N S

5.1 The gas phase metallicity

5.1.1 On the variation of the Z as a function of the sSFR evolution

In this paper, we explored the dependence of gas-phase metallicity
on the sSFR. In particular, we derived general analytic formulae
that relate the gas phase metallicity to both the infall-to-SFR ratio
and the sSFR, for the case of single-zone single-phase galaxies and
a linear Schmidt (1959) star formation law. The derived relations
take the typical form Z(sSFR) = yZ

�(sSFR/ν) + I (sSFR/ν), where I is
the integral of the past enrichment history over the sSFR.

In this paper, both the inflow- and the outflow-to-SFR ratios are
functions of time (equivalently of the sSFR) and may depend on
the input cosmology, the amount of gas that may penetrate the star-
forming regions of galaxies and the adopted star formation law. It is
important to stress that this approach is different from that adopted
in many analytical chemical evolution works in the literature, and
still in use to interpret the metallicity of galaxies. These studies
adopt � and η constant, that is, they do not take into account that
realistic outflow- and inflow-to-SFR ratios may change with time
as the result of the evolution of the galaxy. Therefore, when they
are compared to data at a given redshift, they can only give a simple
parametrized understanding of the mass–metallicity relation at that

Figure 6. z < 4 evolution of the models discussed in Figs 3 and 4 in the
three-dimensional space given by SFR, mass and metallicity. The shaded
area is the analytical formula of the fundamental metallicity relation given
by Mannucci et al. (2010).

fixed epoch, rather than offering a comprehensive view of galaxy
evolution with time.

We show that in many circumstances (early evolution, quasi-
steady-state evolution with slowly decreasing sSFR) a good esti-
mate of the gas-metallicity is obtained by the value Zid

L13 that the
system would have if in steady-state evolution with the infall-to-star
formation ratio set by the current value of the sSFR (equation 11),
that is, as in the ideal regulator case of L13. On the other hand, a
metallicity obtained by current value of the infall-to-SFR, i.e. ZL13

(equation 8, L13 non-ideal regulator case), would slightly overesti-
mate the current metallicity of the system. These two values bracket
with high accuracy the current metallicity of the system. Therefore,
we provide the formal justification to L13 approximations and ex-
tend their validity to a larger range of cases. In particular, the formula
adopted by L13 for the ideal case is exact for systems with � −
η > 1 and �, η = const. It is also a good approximation of the actual
metallicity for galaxies with slowly decreasing accretion rates.

Also, we add that, since we did not specify anything on both the
size and the geometry of what we called the ‘galaxy’, the equations
in principle hold at both the local (i.e. for each star-forming region)
and the global galaxy level, with the latter being a suitable weighted
average of the single star-forming regions. Such a theoretical ex-
pectation seems to be corroborated by very recent observations
(Rosales-Ortega et al. 2012).

Finally, L13 (their fig. 7) show the predictions for the mass–
metallicity relation at z > 0 in some specific cases calibrated on
either the Mannucci et al. (2010) or the Tremonti et al. (2004) z ∼ 0
relations. A qualitative agreement with the z ∼ 2 data is achieved.
In this paper, we do not repeat the exercise. However, in Fig. 6,
we plot the z < 4 tracks of the models shown in Fig. 5, compared
to the full three-dimensional fundamental metallicity relation as
given by Mannucci et al. (2010, their equation 2). In the L13 frame-
work, galaxies evolve along the surface given by the fundamental
metallicity relation.

Also, we wish to highlight the following point, which was not
discussed in L13, but it is implied by the assumed Z = f (sSFR)
relation at a fixed epoch. It is in fact relevant to the data–
model comparison to note that the galaxies in the z = 2 and 3
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observational samples show a rather flat SFR–mass relation (cf.
Mannucci et al. 2009, their fig. 6) by virtue of their selection. This
relation is flatter than the typical SFR–mass relation for star-forming
galaxies at the same epoch (e.g. Daddi et al. 2007). If we assume that
the observational samples are culled out from the star-forming pop-
ulation at their respective redshifts, the selection of the most massive
galaxies with systematically below the average SFR creates a bias
such that the most massive galaxies tend to systematically have the
lowest sSFR, and thus to be the most metal rich at their mass scale
(at least this is the expectation in the L13 theoretical framework).
By virtue of the SFR selection threshold, the low-mass galaxies will
have higher than average SFR, and hence a lower metallicity than
the typical star-forming galaxy at the same redshift and mass. This
means that the observational samples might be biased in the direc-
tion of having a steeper mass–metallicity relation than the typical
relation of an unbiased sample of star-forming galaxies at the same
redshift. Therefore, any empirical conclusion on the evolution in the
slope of the mass–metallicity relation must be treated with caution.

5.1.2 On the L13 metallicity formula: accuracy and comparison
to full numerical chemical evolution models

In order to quantify the accuracy of the L13 approximations, we
compared them to a full and direct numerical integration of the
same equations, finding an excellent agreement (<0.1 dex) for three
orders of magnitude in the sSFR and almost 2 dex in Z.

By comparing tracks in the Z−sSFR plane given by either the
L13 approximation or the closed box relation to the predictions of
full numerical chemical evolution models which relax some of the
simplifying assumptions adopted in the analytic case, we find that
in star-forming z < 2 (spiral) galaxies, where the sSFR slowly de-
creases with time, the system evolves along the locus of the steady-
state solutions of decreasing gas fraction and increasing metallicity,
exactly as in the L13 gas-regulated model. In particular, these sys-
tems seek the steady state metallicity without attaining it and the
current metallicity is set by the current value of the sSFR.

Fast-forming (elliptical) galaxies evolve at higher sSFR than
slowly evolving systems at the same metallicity, with a remark-
able similarity to the well-known behaviour in the [α/Fe] − [Fe/H]
plane. Their track in the sSFR–Z plane is better approximated by
closed box models.

5.1.3 The SFR as the second parameter in L13 and other special
cases (closed box, evolution at constant gas mass)

The actual functional form of a mass–(s)SFR–metallicity relation is
quite controversial, with empirical findings also including claims of
a reversal (namely high SFR would correspond to high metallicity)
at high stellar masses (e.g. Yates et al. 2012) and a lack of any SFR
effects at all masses (e.g. Sanchez et al. 2013). Clearly, differences
may originate from a variety of empirical issues related to the sample
specifics (including redshift range and aperture effects; e.g. Sanchez
et al. 2013) as well as to the methods used to derive the metallicity
(and the SFR).

In L13, the metallicity depends inversely on the sSFR. To some
extent, we expect a smaller dependence on the sSFR as a second
parameter at high masses, simply because in L13 ν becomes larger
and hence the term sSFR/ν smaller than the other terms in the
denominator of equation (8). In other words, the most massive
models settle earlier on an evolutionary track where the metallicity
quickly asymptotes to the yield, and the second parameter effect

caused by variations in the (s)SFR becomes consequently small.
It seems more difficult to explain a reversal of the trend above a
given stellar mass scale.

Moreover, L13 model is meant to reproduce the average galaxy;
therefore, it does not take into account that episodic bursts and
mergers may also happen and move galaxies further out of the
‘average’ quasi-steady-state evolution represented by our tracks.

As a matter of fact, in this paper, we also show that an anticorre-
lation between Z and sSFR is found also in the early evolutionary
phases of the closed box model.

In other works (e.g. Davé et al. 2012), the case � − η = 1 (which
is a generalization of the Larson 1972 extreme infall in the con-
text of analytic chemical evolution) has been dubbed ‘steady-state’.
In other words, all the net accreted gas is used up to form stars.
More specifically, it is the � = 1, η = 0 case which is known as
the ‘extreme infall’. It has the property of preserving the gas mass,
rather than the gas fraction, and that the metallicity would evolve
as Z = (ZA + yz) (1 − exp(1/μ − 1)), asymptotically approaching
the yield for μ approaching 0.

The generalization of extreme infall where both inflows and out-
flows are present (�, η = const) has the following analytical solu-
tion for the metallicity:

Z = (ZA� + yz)

�

{
1 − e−� (1/μ−1)

}
(32)

or equivalently

Z = [ZA(1 + η) + yz]

(1 + η)

{
1 − e−(1+η) (1/μ−1)

}
. (33)

It is important to note here that, despite assuming the validity of
the condition � − η � 1, Davé et al. (2012) do not fully derive
these solutions. In fact, they base their model on their equation (9).
We find that their formula can be re-arranged, after discard-
ing the trivial solution Z(t) = 0 and assuming that Z �= ZA, as
Z ∼ [ZA(1+η)+yz]

(1+η) , which is only an approximation to our exact so-
lutions (e.g. equation 33), valid when the gas fraction is small (as
pointed out also by Dayal et al. 2013). This latter condition (μ  1)
is unlikely to be true in high-redshift galaxies.

When the galaxy is in its asymptotic regime at constant gas mass,
that is, Z � ZA + yz, the only way to increase its metallicity is
by acting on ZA �= 0. In the first place, in the light of our full
analytic derivation, we stress that the correct solutions for Z in a
standard analytic chemical evolution model, when the infalling gas
metallicity changes with time and it is linked to the past history of
the galaxy, must take into account that ZA = ZA(t) in the formal
integration (equation 22 in this paper, see also the implementation
of galactic fountains in Recchi et al. 2008).

We then note that when ZA drives the metallicity, it increases
with time in a manner that is not necessarily linked to the sSFR
evolution. In other words, in systems with �( − η) ∼ 1, the gas
fraction still changes with time, leading to changes in the sSFR
which are uncorrelated to variations in the gas metallicity (in prin-
ciple, set by yield, and varied through a changing metallicity in the
‘re-accretion’ of previously ejected material). This also implies that
the scatter around the average Z−sSFR relation cannot be described
by the same equation that governs the Z = Z(sSFR) evolution as
in L13. On the contrary, in Davé et al. (2012), the explanation of
the scatter (and of the Z−sSFR anticorrelation) requires stochastic
events that drive the galaxies out of equilibrium, either enhancing
the SFR (e.g. mergers) or momentarily suppressing it (e.g. a sudden
decrease in the accretion), and causing either a decrease or an in-
crease in Z, respectively. This perspective is not dissimilar to the ex-
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planation given by Mannucci et al. (2010) when they first presented
the empirical results on the ‘fundamental metallicity relation’, and
it is further extended in other recent work (e.g. Forbes et al. 2013)
which depict both the mass–SFR and the mass–Z relations as the
result of statistical equilibrium in the galaxy population at a given
epoch.

5.2 Stellar metallicities in the L13 model

As a further extension of the L13 model, we show that it also nat-
urally predicts a mass–metallicity relation in the stellar component
which matches the current data at different epochs.

We compare our predictions to the data, and despite the encour-
aging qualitative agreement, no firm quantitative conclusions can
be drawn due to: (i) the large scatter in the high-redshift data; (ii)
the lack of consistency among the stellar metallicity measurements
at different epochs and (iii) the presence of both passive and star-
forming galaxies in the z ∼ 0 data set.

L13’s slowly evolving galaxies therefore match both the observed
cosmic evolution in the gas and in the average stellar metallicity at a
given mass. This is a consequence of the fact that the average stellar
metallicity systematically lags ∼0.1–0.2 behind the gas metallicity
of the same galaxy (as observed).

In evolved (μ  1) systems, such a small difference can be ex-
plained by the fact that both the gas and the average stellar metallic-
ity tend to the yield. Whereas, during earlier stages of the evolution,
the explanation lies in the fact that the SFR is steadily increasing
in time. Therefore, the youngest stellar generations (whose com-
position is the same of the gas-phase) have a larger weight in the
computation of the average stellar metallicity.

These findings imply that the evolution of the average stellar
metallicity in the early phases of L13 galaxies as a function of the
sSFR can be approximated by the same formula adopted for the gas
phase metallicity.
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120
Zahid H. J. et al., 2013, preprint (arXiv:1310.4950)

APPENDIX A

The impact of the assumed star formation law

Let us discuss the impact of a more general star formation law on
our results, that, for the purpose of this discussion, we write as
ψ = νM (1+x)

gas . In this paper, we presented the results for the case
x = 0. Such a linear Schmidt volumetric relation is a standard
assumption in the literature and it has the advantage of a slight
simplification of the calculations presented in this paper. To cor-
roborate our assumption, we note that in a recent paper, Krumholz
et al. (2012) showed that a simple volumetric star formation law as
the one adopted in our paper can explain a wide range of both local
and high-redshift observations.

Furthermore, it leads us to a relation with exponent 1.5 if the star
formation efficiency is expressed in units of the local free fall time,
and this latter quantity is in turn expressed as a function of the gas
volume density. This also ensures compatibility with the expression
adopted in studies where SFR and density are in units of surface
which assume an exponent x ∼ 1.4.

It is well known that the solutions of the form Z = Z(μ) of
analytical chemical evolution models do not explicitly depend on

the SFR (and its law). Therefore, the particular star formation law
adopted does not influence these general results. It is the conversion
of the gas fraction into sSFR that introduces a dependence on the as-
sumed star formation law in the equations of the form Z = Z(sSFR).
To see the impact of the change let us proceed as in the main body
of the paper, namely let us focus on the steady-state solutions and
the derive more general statements.

In the case of the steady state, the results presented in equations
(12)– (14) and (16) (its first row), as well as other results like
equations (32) and (33), will not depend on x as they do not feature
any explicit dependence on the star formation law.

On the other hand, when x �= 0, equation (1) would be

sSFR/ν ∝ μ

1 + μ
μx

(e.g. Reddy et al. 2006, when x = 0.4) and equation (15) would read
as

sSFR/ν = (� − η − 1)Mx
gas .

The steady state solution presented in Section 3.2 (equation 16,
second row) will then be

Z = 1

1 + η + sSFR/(νMx
gas)

,

where for simplicity we ignore the metallicity of the infalling gas.
If x > 0, the system behaves as if it has a higher effective star for-
mation efficiency νMx

gas. Moreover, x �= 0 would imply an evolution
at constant gas fraction and metallicity with the sSFR still changing
in time as Mx

gas.
Given the close link between I1 (equation 11), equation (24) and

the steady-state solution (equation 16), we expect a similar variation,
namely the appearance of a factor ∼Mx

gas in the expression for
ZL13 in both the ideal and non-ideal case, as well as in the general
solutions. More quantitatively, this happens because the term G in
the differential equation (19) will now be

G(sSFR) =
1 + ZA�

yz

sSFR/ν((1 + x)(� − η − 1)Mx
gas − sSFR/ν)

, (A1)

leading to a change in the expression for F (sSFR) too. The quali-
tative description of the galaxy behaviour will not change: as these
models tend to a � ∼ 1 (constant gas mass) evolution in the long
term, the factor Mx

gas will be merely a constant for all practical
purposes.
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