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FIRST CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING

A NEW FORMULATION FOR THE TURBULENT ENERGY SPECTRUM
IN THE UNIVERSAL EQUILIBRIUM RANGE

ANTONELLO A. BARRESI, MASSIMO PIPINO and GIANCARLO BALDI

Dipartimento di Scienza dei Materiali e Ingegneria Chimica
Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

ABSTRACT

The three-dimensional turbulent energy spectrum function is derived for nondecaying homogeneous
and isotropic turbulence of an incompressible fluid in the universal equilibrium range. The Ellison'’s
hypothesis is used in order to obtain a formal mathematical solution of the energy spectrum dynamic
equation, which has been compared with the energy spectra proposed in literature.

INTRODUCTION

In the study of physical and chemical processes in turbulent media, the analysis of the fluid
velocity field is fundamental. In many applications the turbulent effects on the physical and
chemical processes have to be taken into account and therefore a description of the
turbulent motion is required.

Among the different approaches to the problem of the description of the turbulent
velocity fluctuations, the spectral analysis is very powerful, because it shows the influence
of the various scales on the turbulent phenomena explicitly. It is well known that, in order
to obtain the energy spectrum function £(k,) in closed form, both mathematical difficulties
and closure problems have to be overcome.

The aim of the present work is to obtain a simplified formulation for the turbulent
energy spectrum valid in the universal equilibrium range; our final goal is the investigation
of the interaction between turbulence and chemical processes, in special way the influence
of turbulent phenomena on yield and selectivity of very fast reactions (micromixing), and
on the characteristics of a solid product (precipitation and agglomeration).

Several closure hypotheses for the energy transfer mechanism have been proposed
in the last decades, but the validity of the obtained correlations for E(k,f) is restricted to
limited wavenumber subranges.

A simplified solution has been obtained from Kolmogoroff postulates by neglecting
the energy dissipation: this assumption is valid only in the inertial subrange, where the
energy spectrum function is given by:

E(k,t)= Ae**k3 (D

The hypotheses formulated for the energy transfer in the universal equilibrium range
(originally proposed by Obukhoff, Kovasznay, Heisenberg and later modified) can describe
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this behaviour at low k values. On the other hand, it has been demonstrated that some of
them (Obukhoff's, Kovasznay's and Heisenberg's hypotheses) do not correctly describe the
energy transfer at high £ values, where they predict an algebraic fall-off of energy at
increasing wavenumbers. Some other transfer models (by Pao and Corrsin, Dugstad,
Saffman) lead to an exponential decrease of E(k,f) at high & values, but it must be remarked
that Pao and Corrsin's assumption is still not valid for very high wavenumbers while
Saffiman obtained a solution valid only at very high & values. Panchev and Kesich showed
that the hypotheses by Pao and Corrsin and by Saffman are a simplified form of the
hypothesis of Ellison (1961), and proposed an interpolation formula for the universal
equilibrium range using the results of Pao and Corrsin (at low wavenumbers) and Saffman
(at high wavenumbers).

An empirical equation has been proposed by Sato et al (1984) for the triple
velocity-correlation function, equivalent to the energy transfer function in wavenumber
space: comparing calculations by the previous hypotheses and the empirical equation
proposed, it was noted that the differences were very small at small elapsed time, but
became remarkable at longer time.

It has to be pointed out that, up to now, no unique formulation has been found. In
particular, there is not even a generally accepted expression for the spectrum in the
universal equilibrium range, the one in which the turbulence is no longer affected by the
external conditions. Recently, Qian (1984) applied the methods of non-equilibrium
statistical mechanics combined with a perturbation-variation approach to solve closure
problems of turbulence theory ant to calculate the velocity spectrum, but no definitive
results have been found up today.

‘ The validity of the "global scaling invariance" itself, postulated by Kolmogoroff
(1941) theory is questionable in the high frequency dissipation range. Kolmogoroff (1962)
himself had proposed a modification of his theory, assuming that spatial fluctuations of the
energy dissipation are intermittent; this means that the high wavenumber turbulent activity
comes in bursts separated by quiescent pertods.
The intermittency phenomena have been discussed deeply by Frisch (1991): the multifractal
model of turbulence recently proposed can model intermittency but implies the absence of a
universal energy spectrum in the Kolmogoroff sense assuming only "local scaling
invariance". But it must be evidenced that recently She and Jackson (1993) reexamined
available experimental data, concluding that "current experimental spectral data support the
Kolmogoroff's universal theory, as well as the multifractal-type universality.

The energy transfer hypothesis of Ellison will be adopted in this work. The
theoretical discussion about the physical basis of this closure overcomes the aims of the
present work, which is the derivation of a formulation applicable in a wider range of the
wavenumber space. In what follows, isotropic homogeneous nondecaying turbulence and
incompressible fluid will be considered.

THE DYNAMIC EQUATION FOR THE ENERGY SPECTRUM AND THE
ELLISON'S CLOSURE HYPOTHESIS

The behaviour of the energy spectrum as a function of time and wavenumber co-
ordinates is described by the dynamic equation:
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9@%‘-”—) = F(k,t)— D(k,t) @)

where F(k,f) is the energy-transfer-spectrum function and D(k,f) = 2vk2E(k,f) represents
the dissipation spectrum function. F(k,/) is the Fourier transform of the third-order
correlation tensor S(r,f) and represents the convective term originated by the interactions

among eddies of different size.

Equation (2) describes the behaviour of the energy spectrum in the whole
wavenumber space, and therefore it is surely valid in all the universal equilibrium range.
This range has been identified by the Kolmogoroff first hypothesis, stating that at
sufficiently high Reynolds numbers there must be a range of high wavenumbers in which
turbulence is statistically in equilibrium, determined by the parameters € and v only. It is
defined "universal" because independent of external conditions; the inertial subrange is
included in the universal equilibrium range as its lower edge. A characteristic wavenumber
k, relative to the range where the viscous effects becomes predominant, can be introduced,

it is usually defined as the reciprocal of the Kolmogoroff microscale Ax:

g\
ky = ('\’,3‘) 3)

Equation (2) cannot be solved, because the transfer function is unknown: a closure

equation for F(k,t) is needed.
A classical approach to the problem consists in the assumption of some relationship

between the energy transfer spectrum F(k,), the energy spectrum £K(kt) and the

wavenumber £. -
Various assumptions have been suggested in literature and have been critically

reviewed by Pao (1965), Hinze (1975) and Sato ef al. (1984); very promising is the use of
the Ellison's assumption, which is a modification of the Obukhoff's hypothesis and, as it has
been shown by Panchev and Kesich (1969). can lead to the solutions obtained by Saffman
(1963), Corrsin (1964) and Pao (1965) in specified subranges.

Let us consider the dynamic equation (2) in its integrated form:

G ek k £,
——j E(K,0dk = [ F(K' 0ydk' =2v[ k" E(K' 1)k’ (4)
6’1 0 4} 0

and introduce the integral transfer function:

Gkt = j‘ F(k'.1)dk" (5)

G(k,1) represents the interaction of eddies associated to different wavenumbers transferring
energy to or from the eddies in the region 0-k by inertial effects.
Ellison (1961) proposed for (s(£.r) the expression:

G(k,t) = —akE(/r,z)[Z j:k”E(k',: )dk’}l : (6)

in which « is a proportionality constant.
It is possible to give a physical interpretation of the members on the right-hand side

of equation (6): Obukhoff considered the energy transfer in the wavenumber space
analogous to the energy transfer from the main motion to the turbulent velocity fluctuations
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and posed the integral transfer function as proportional to the Reynolds stress. The
Reynolds stress was assumed proportional to the product of the kinetic energy of the
eddies associated to wavenumbers in the range k-co and the mean rate of strain of the
eddies associated to wavenumbers in the range 0-k. Ellison wrote the kinetic energy in the
form kE(k,f), implying in this way that only the part of Reynolds stress associated with the
wavenumber k interacts with the mean rate of shear of the eddies of wavenumber smaller

than k (Hinze, 1975).

By substituting equations (5) and (6) in equation (4), in the universal equilibrium
range it is possible to write the dynamic equation for E(k,?) in the form (Hinze, 1975):

112 o .
kE(k,t)[z j:k’zE(k’,t)dk’] =2 ["kE(K 0 dk 7

As said above, solutions of equation (7) have been found by Panchev and Kesich
(1969) in the simplified cases of very low and very high k values: they proposed an
interpolated solution valid in the whole universal equilibrium range, but no complete and
formally derived solution has been found up today.

THE PROPOSED ENERGY SPECTRUM FUNCTION
By introducing the quantity:

© = O(k) = [—- jo"k'ZE(k')dk']m )

we can rewrite the members of equation (7), obtaining for non-decaying turbulence

=299 ©
vk™ dk

and
%J':k':E(k’)dk’ =§-(1 —@2) (10)

Substituting equations (9) and (10) in equation (7) and rearranging, the energy
spectrum dynamic equation may thus be written in the form:

o (1-07) &
B ‘) , -
e a® k;
which, for the boundary condition ® =0 at k = 0, admits the implicit formal solution:
140 [ &2
=ex +20 12
-0 p(akj ) (12

Analysing the two members of equation (12), useful informations about the

behaviour of @ may be obtained.
At high values of k/k,, ©® = 1 and, in the right-hand side of equation (12), the term
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20 becomes negligible. At very low values of k/k;, © goes to zero more slowly than (k/k,)?
and the first term in the argument of the exponential function becomes negligible. It is thus
possible to substitute for © in the right-hand side of equation (12) the solution of equation

(11) obtained at low wavenumbers.
In this region, the energy spectrum is described by the Kolmogoroff spectrum law

(1): substitution in equation (6) gives the modified integral transfer function G'(£) valid for
low wavenumber values:

G'(k)y=a () ek E(k) (13)

which is the well-known integral transfer spectrum proposed by Corrsin and Pao.
By substituting in equation (4), the expression for ® valid in the lower wavenumber

range can be obtained:
‘ 1 k4/3 1/2
©F=]1-exp (ad)? P32 (14)

in which we introduce the notation ®* in order to outline that this is only a particular

integral of equation (11).
The right-hand side of equation (12) thus becomes:

k2 1 k4i3 12
e +2|1—-exp| - =expm 15
Pl ok Pl oAy k7 *P (13)

if, for sake of simplicity, we indicate as m the argument of the exponential term; from
equation (12):

@zexpm—-l
expm+1

and finally from equation (9):

(£)”

exp[—@—); E } expm (expm—1)
L2 3

fi-ea[- (&) ]| (ePmD

Equation (16) gives the three-dimensional turbulent energy spectrum function in the
universal equilibrium range.

E(ky=4ev)) | L)+ () (16)

3(.-1(1):

Value of the constants

The value of the constants o and 4 must be either theoretically calculated or
experimentally derived: a great importance has been given in literature to this problem
(Hinze, 1975). In particular, Kraichnan's Lagrangian-History-Direct-Interaction predicts for
the Kolmogoroff constant 4 an upper limit of 1.77. An experimental investigation, carried
out by Pao (1965), gave the value 4 = 1.70 which is in good accordance with the theoretical
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Figure 1. Comparison among the proposed Figure 2. Comparison among the proposed
spectrum and the simplified solutions derived spectrum and the simplified solutions derived
from Ellison's hypothesis in the lower from Ellison's hypothesis in the higher
wavenumber range: (——) this work; (——) wavenumber range; (——) this work; ( )
Kolmogoroff (eq. 1); (-+ee ) Pao and Corrsin Kolmogoroff (eq. 1); (- ) Pao and Corrsin
(eq. 19); (= - — - ) Saffman calculated with (eq. 19); (= - — - -) Saffman calculated with
a=023 and (--- -~ ) with o = 0.37 (eq. a=023 and (- ---— ) with o = 0.37 (eq.
20); (- — -) Panchev and Kesich, interpolated 20); (- — -) Panchev and Kesich, interpolated
(eq. 24). (eq. 24).

predictions of Kraichnan. It is also necessary to explicate the relationship between the
Kolmogoroff constant and the proportionality constant c. Particular attention has been
reserved to the a-value by the Heisenberg's theory (which will be shortly discussed later): it
has been shown that, according to the previous theory, it is possible to obtain the
relationship between o and 4 as:

A=(2)" (17)
In this case the theoretical lower value obtained by Kraichnan is o = 0.38, while the
experimental analysis of Pao gives a = 0.40. As regards Ellison's assumption, the simplified
solution in the case of no energy dissipation brings to the Kolmogoroff spectrum law with
the relationship:

A=(Z)" (18)

which, using Pao's data, gives for the proportionality constant the value a = 0.37.
Saffman (1963) gives for the value of his constant (that in our model is equivalent to
al), a range 4.4 + 2.7, corresponding to values for a varying from 0.225 to 0.37.
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In the following the value of the Kolmogoroff constant obtained by Pao (4=1.7) and
the relative value of o as given by equation (18) (o = 0.37) will be used.

COMPARISON WITH THE ENERGY SPECTRA PROPOSED BY PREVIOUS
AUTHORS .

As a first step, it is interesting to compare the behaviour of the proposed spectrum
with the simplified solutions derived from Ellison's theory and obtained by Pao (1965) and

Corrsin (1964), by Saffman (1963) and by Panchev and Kesich (1969).
Figure 1 shows the comparison at low wavenumbers; the Kolmogoroff spectrum is

also reported. In this region the solution proposed in this work is practically coincident with
the spectrum proposed by Pao and Corrsin:

E(k)= A(eV' )" (k1 k)™ exp[-l.SA(k /k, )“’3] (19)

It must be noted that the latter cannot be applied in the high-wavenumbers region but it has
been validated by experimental data in the region of lower wavenumbers.

In the high wavenumber range the proposed spectrum closely follows the solution
obtained originally by Saffman (1963) [if calculated using the o = 0.37 constant] and later on
proposed by Panchev and Kesich (1969):

E(k)y=a(ev")"(k/k,)" exp[—a“(k Ik, )2] (20)

while the difference from the Pao and Corrsin's spectrum is evident (see Figure 2).

As said above, Saffman gave a range for :
his constant: the spectra corresponding to the  E(k) (evS)™
higher and lower value are plotted. As expected,
the spectrum proposed by Saffman fails at low
k-values.

In Figure 3 the comparison among the
proposed spectrum and some spectra obtained in
literature starting from different hypotheses is
shown; as said before, all the spectra more or
less closely follow the Kolmogoroff spectrum
law for the lower k-values, so the comparison
will be carried out in the higher wavenumber
range.

1E-05 -

The Heisenberg (1948) solution has been
derived using the integral transfer function:

G(k)H = _2af:kr-3/2E(kp)|IZdkrj:kl‘.‘E(kr)dk/

1E-10
21) |
in which the first integral term represents a sort o1 o2 os 1 2 5
of kinematic turbulent viscosity taking into kik,

account the effect of eddies associated with high  Figure 3. Comparison among (—) the
k-values. It has been demonstrated, as said Proposed spectrum and the resuits obtained by

earlier, that this hypothesis is not valid especially (- — -) Heisenberg (eq. 22) and () Qian
in the range of high wavenumbers, where the (ed.23).
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Heisenberg spectrum:

(k! k, )-5/3

148730’ )k &, " @

E(k)=A (V)"

fails.

It is remarkable that, at high k-values, the Heisenberg spectrum shows an algebraic
fall-off of energy while most of the solutions proposed later, and the one obtained in this
work, show an exponential behaviour. A pseudo-algebraic law has been recently predicted
also by Frisch and Vergassola (1991) in the intermediate dissipative range, using a
multifractal model; but a much faster decrease is expected beyond the bottom of this
intermediate range.

Kraichnan (1967) pointed out that a stronger-than-algebraic decrease implies an
increase of intermittency of the turbulent fluctuations; but up today no conclusive
experimental data showing the exact shape of the fall-off of energy at high wavenumbers
have been found and the final cut-off shape is a point of discussion (Frisch and Morf, 1981),
even if Sreenivasan (1985), discussing currently available data, observed that in the limit of 4
large E(k) is best fit by an exponential.

Recently Foias et al. (1990) gave support to the prediction of an exponential fall-off
establishing a theoretical lower bound on the power to which the wavenumber & is raised in
the exponential decay of the dissipation range spectrum, showing that available data are
consistent with a simple exponential decay (Manley, 1992). :

It can be remembered, on the other side, that, as demonstrated by Stewart and
Townsend (1951), every correlation for G(k,f) given as the product of two integral terms
dealing respectively with the regions 0-k and k-co leads to an algebraic behaviour of the
spectrum irrespective of the exact form of the involved functions.

The previous spectra (Pao and Corrsin, Saffman and Panchev & Kesich) and the
spectrum proposed in this work derive from Ellison's closure which is not expressed as a
product of two integral terms.

A spectrum function for the universal equilibrium range has been recently derived by
Qian (1984) on the basis of the statistical mechanics theory of turbulence: he obtained the
relationship:

E(k)=119(ev’)" (k/ k, )“5’3[1 +53(k/k, )”’]exp[-s.ct(k Ik, )"’] (23)

deriving an exponential fall-off of energy for higher wavenumbers (see Figure 3).

Panchev and Kesich (1969), on the base of their work concerning Ellison's
assumption, proposed an interpolation formula, having Saffman's spectrum and Pao and
Corrsin's spectrum as limiting solutions, thus covering the whole universal equilibrium range:

E(k)= (v’ )‘“[A(k [k, +a’ (k/k, )“‘] exp[—l.SA(k k)" - (k1 k, )’] (24)

The spectrum described by equation (24) is quite similar to the spectrum proposed by the
authors (see Figures 1 and 2), because the limit solutions have been obtained adopting
Ellison's closure. But it must be pointed out that the former is just an interpolation, while the
latter has been obtained by the solution of the dynamic equation for the energy spectrum.
The difference is highlighted if the dissipation spectra are compared.

In Figure 4 the dissipation spectrum obtained by our calculation is shown; a
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maximum is observed at &/k; = 0.19. The quantity ©® defined in equation (8) can be
interpreted as a non-dimensional cumulative shear stress of the eddies associated to the
wavenumber range 0-k. ©?2 is the (dimensionless) integral of the dissipation spectrum.

In Figure 5 the dissipation spectra derived from the energy spectra mentioned earlier
‘ are compared. It can be seen that the maximum is generally located in correspondence of a
| value k. in the range 0.17k, — 0.25k,. The different values are reported in Table 1.

CONCLUSIONS

A formal mathematical derivation for the three-dimensional turbulent energy
spectrum function in nondecaying homogeneous and isotropic turbulence has been proposed.
To this aim, the Ellison's closure has been adopted.

The energy spectrum in the whole universal range has been obtained and a
comparison with the spectra in literature has been carried out; it must be noted that only a
few of them were derived for the entire universal equilibrium range. The comparison shows
that the proposed spectrum follows the solutions of Pao and Corrsin and of Saffman at low
and high wavenumbers respectively. It is similar, but significantly different, from the
interpolation spectrum proposed by Panchev and Kesich.

All the spectra are roughly coincident in the region of low wavenumbers, while the

D(k) (ev)3+ @2 fs(k) (gv)3H
2 *

2

0.01 0.1 1

kik, kik,
Figure 4. The dissipation spectrum: (——) Figure 5. Comparison among the differential
differential and (——) integrated form. dissipation spectra: (—) this work; (——)
Pao and Corrsin; (-------) Heisenberg; (- - -)
Saffman, 0=0.37; (- - - -) Qian; (~--- - )

Panchev and Kesich (interpolation formula).
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Table 1. Co-ordinates of the maximum of the dissipation spectrum calculated
using different correlations from literature

Spectrum eq. Kumulka Dk (€V)**
This work (16) 0.19 1.50
Pao (1965), Corrsin (1964) (19) 0.17 | 1.48
S.aﬂ:'man (1963): a=0.23 20) 034 1.79
Saffman (1963): a=0.37 (200 043 1.41
Heisenberg (1948) 22) 025 1.96
Qian (1984) (23) 0.18 2.09
Panchev and Kesich (1969) | 24) 0.19 2.05
(interpolation formula)

behaviour in the dissipative range is clearly a function of the type of closure that has been
used and, therefore, of the proposed energy transfer mechanism. The differences are
highlighted if the dissipation spectra are compared.

This work is a preliminary result of a project whose final goal is the investigation and
description of the turbulence effects on chemical processes.

Work is currently in progress in order to describe the energy spectrum in case of
decaying turbulence as a function of the local turbulent Reynolds, and to deal with non-
homogeneous turbulence. The next step will be the investigation of the scalar spectrum.
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della Ricerca Scientifica e Tecnologica" (40% MURST-Fluidodinamica Muitifase) and
C.N.R. (Progetto Finalizzato Chimica Fine).
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NOTATION

A Kolmogoroff constant

D(kt) dissipation spectrum function

E(k,;t) energy spectrum function

F(k,f) energy-transfer spectrum function

G(k,t) integral transfer function

k wavenumber :

ka wavenumber range of main dissipation

k.x K value at which the maximum in the differential dissipation spectrum is observed
m

defined in eq. (15)

t time

Greek symbols

o constant in eq. (6)

€ turbulent energy dissipation rate

® nondimensional cumulative shear stress of the eddies associated to wavenumber
range 0-k; defined in eq. (8)

Ag Kolmogoroff microscale

v kinematic viscosity
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