141 research outputs found

    Turbulence, Complexity, and Solar Flares

    Full text link
    The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.Comment: 2 figure

    Non-universality of transverse Coulomb exchange at small x

    Full text link
    Within an explicit scalar QED model we compare, at fixed x << 1, the leading-twist K_T-dependent `quark' distribution f_q(x, K_T) probed in deep inelastic scattering and Drell-Yan production, and show that the model is consistent with the universality of f_q(x, K_T). The extension of the model from the aligned-jet to the 'symmetric' kinematical regime reveals interesting properties of the physics of Coulomb rescatterings when comparing DIS and DY processes. At small x the transverse momentum induced by multiple scattering on a single centre is process dependent, as well as the transverse momentum broadening occurring in collisions on a finite size nuclear target.Comment: 28 pages, 3 eps figure

    Asymptotic geometry of negatively curved manifolds of finite volume

    Get PDF
    We study the asymptotic behavior of simply connected Riemannian manifolds X of strictly negative curvature admitting a non-uniform lattice Γ. If the quotient manifold X = Γ\X is asymptotically 1=4-pinched, we prove that Γ is divergent and U X has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls B(x,R) in X is asymptotically equivalent to a purely exponential function c.x/eδR, where δ is the topological entropy of the geodesic flow of X . This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices Γ in negatively curved spaces X (not asymptotically 1/4-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen- Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential

    Degrees of Freedom of the Quark Gluon Plasma, tested by Heavy Mesons

    Full text link
    Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assuption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamicsComment: proceedings symposion "New Horizons" Makutsi, South Africa, Nov 201

    Conservation tillage in organic farming

    Get PDF
    Organic farmers are interested in adopting conservation tillage to preserve soil quality and fertility and to prevent soil erosion. Within the framework of a French national study, we compared conventional (ploughing) and conservation tillage systems in organic farming for arable and vegetable cropping systems. Field experiments and on-farm surveys were conducted in several regions of France in order to assess the effects of different tillage systems on soil fertility (physical, chemical, biological) and on weed and crop development. Conservation tillage techniques induced a more compact soil, an increase of carbon and microorganisms in the first soil layer, and an increase of earthworm biomass for very superficial tillage. Weed control was only a major problem for the very superficial tillage, which in turn generated lower crop yields than conventional tillage. The main issues raised by this programme deal with the long-term effects of these techniques on soil fertility, and the improvement of conservation tillage techniques in organic farming

    Hard probes in heavy ion collisions at the LHC: heavy flavour physics

    Full text link
    We present the results from the heavy quarks and quarkonia working group. This report gives benchmark heavy quark and quarkonium cross sections for pppp and pApA collisions at the LHC against which the AAAA rates can be compared in the study of the quark-gluon plasma. We also provide an assessment of the theoretical uncertainties in these benchmarks. We then discuss some of the cold matter effects on quarkonia production, including nuclear absorption, scattering by produced hadrons, and energy loss in the medium. Hot matter effects that could reduce the observed quarkonium rates such as color screening and thermal activation are then discussed. Possible quarkonium enhancement through coalescence of uncorrelated heavy quarks and antiquarks is also described. Finally, we discuss the capabilities of the LHC detectors to measure heavy quarks and quarkonia as well as the Monte Carlo generators used in the data analysis.Comment: 126 pages Latex; 96 figures included. Subgroup report, to appear in the CERN Yellow Book of the workshop: Hard Probes in Heavy Ion Collisions at the LHC. See also http://a.home.cern.ch/f/frixione/www/hvq.html for a version with better quality for a few plot

    Improving baking quality, nutritional value and safety of organic winter wheat / Améliorer la qualité technologique, nutritionnelle et sanitaire du blé biologique, Principaux leviers agronomiques et technologiques

    Get PDF
    The organic bread wheat market has been diversified over time through the emergence of different sale channels. Processors require organic bread wheat of higher quality and safety in order to meet the consumers’ demand. The overall objective of the AGTEC-Org project was to identify agronomical and technological ways to improve the performance of organic wheat and flour. The findings would contribute to enhanced baking quality and nutritional value of organic flour, as well as prevention of mycotoxin contamination. The project involved 9 research centers or universities from 5 European countries for a total budget of about 1.5 million €. More than 400 experimental treatments were analyzed from 23 agronomic trials and 4 lab-experiments on food technology. Choice of cultivar is an efficient way to obtain higher grain quality. Intercropping legumes (grain or forage) improves weed control and N availability for wheat crop or succeeding crop. Green manure can be an effective alternative to farmyard manure. Fertilization with organic fertilizers improves yield and quality when water is available. Reduced tillage affects soil fertility and wheat yield but has little effects on grain quality. Milling process strongly influences flour characteristics. Stone milling improves the nutritive value and flour characteristics remain very stable independently of the milling yield. However, stone milling slightly raises DON levels. Characteristics of flour produced by means of roller milling appear very dependent on milling yield, instead. Increasing milling yield with the aim of enriching nutritional quality has a detrimental effect on either safety (DON) or bread-making quality (bread volume). Debranning before milling has a very positive impact on flour safety by reducing its DON content by 50 %

    Predictions for p+p+Pb Collisions at sNN=5\sqrt{s_{NN}} = 5 TeV: Comparison with Data

    Full text link
    Predictions made in Albacete {\it et al} prior to the LHC p+p+Pb run at sNN=5\sqrt{s_{NN}} = 5 TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication are also shown here.Comment: 55 pages 35 figure

    System size dependence of nuclear modification and azimuthal anisotropy of jet quenching

    Full text link
    We investigate the system size dependence of jet-quenching by analyzing transverse momentum spectra of neutral pions in Au+Au and Cu+Cu collisions at sNN\sqrt{s_{\textrm{NN}}} =200 GeV for different centralities. The fast partons are assumed to lose energy by radiating gluons as they traverse the plasma and undergo multiple collisions. The energy loss per collision, ϵ\epsilon, is taken as proportional to EE(where EE is the energy of the parton), proportional to E\sqrt{E}, or a constant depending on whether the formation time of the gluon is less than the mean path, greater than the mean free path but less than the path length, or greater than the path length of the partons, respectively. NLO pQCD is used to evaluate pion production by modifying the fragmentation function to account for the energy loss. We reproduce the nuclear modification factor RAAR_\textrm{AA} by treating ϵ\epsilon as the only free parameter, depending on the centrality and the mechanism of energy loss. These values are seen to explain the nuclear modification of prompt photons, caused by the energy lost by final state quarks before they fragment into photons. These also reproduce the azimuthal asymmetry of transverse momentum distribution for pions within a factor of two and for prompt photons in a fair agreement with experimental data.Comment: 26 pages, 17 figures. One more figure added. Discussion expanded. Typographical corrections done, several references added. To appear in Journal of Physics

    Jet Tomography in the Forward Direction at RHIC

    Get PDF
    Hadron production at high-pTp_T displays a strong suppression pattern in a wide rapidity region in heavy ion collisions at RHIC energies. This finding indicates the presence of strong final state effects for both transversally and longitudinally traveling partons, namely induced energy loss. We have developed a perturbative QCD based model to describe hadron production in pppp collision, which can be combined with the Glauber -- Gribov model to describe hadron production in heavy ion collisions. Investigating AuAuAuAu and CuCuCuCu collisions at energy s=200\sqrt{s}=200 AAGeV at mid-rapidity, we find the opacity of the strongly interacting hot matter to be proportional to the participant nucleon number. Considering forward rapidities, the suppression pattern indicates the formation of a longitudinally contracted dense deconfined zone in central heavy ion collisions. We determine parameters for the initial geometry from the existing data.Comment: 6 pages for Hot Quarks '06 Conferenc
    • …
    corecore