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Abstract

We study the asymptotic behaviour of simply connected, Riemannian manifolds
X of strictly negative curvature admitting a non-uniform lattice �. If the quotient
manifold X̄ = �\X is asymptotically 1/4-pinched, we prove that � is divergent and
UX̄ has finite Bowen-Margulis measure (which is then ergodic and totally conser-
vative with respect to the geodesic flow); moreover, we show that, in this case, the
volume growth of balls B(x,R) in X is asymptotically equivalent to a purely expo-
nential function c(x)e�R, where � is the topological entropy of the geodesic flow of X̄.
This generalizes Margulis’ celebrated theorem to negatively curved spaces of finite vol-
ume. In contrast, we exhibit examples of lattices � in negatively curved spaces X (not
asymptotically 1/4-pinched) where, depending on the critical exponent of the parabolic
subgroups and on the finiteness of the Bowen-Margulis measure, the growth function
is exponential, lower-exponential or even upper-exponential.

AMS classification : 53C20, 37C35
Keywords: Cartan-Hadamard manifold, volume, entropy, Bowen-Margulis measure

1 Introduction

Let X be a complete, simply connected manifold with strictly negative curvature.
In the sixties, G. Margulis [25], using measure theory on the foliations of the Anosov
system defined by the geodesic flow, showed that if � is a uniform lattice of X (i.e.
a torsionless, discrete group of isometries such that X̄ = �\X is compact), then the
orbital function of � is asymptotically equivalent 1 to a purely exponential function:

v
�

(x, y,R) = #{� 2 � | d(x, �y) < R} ⇠ c
�

(x, y)e�(�)R

where �(�) = limR!1R�1 ln v�(x, x,R) is the critical exponent of �. By integration
over fundamental domains, one then obtains an asymptotic equivalence for the volume
growth function of X:

vX(x,R) = volB(x,R) ⇠ m(x)e�(�)R .

1
Given two functions f, g : R+ ! R+, we say that f is asymptotically equivalent to g when

lim

R!+1 f(R)/g(R) = 1, and we will write f ⇠ g.
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It is well-known that the exponent �(�) equals the topological entropy of the geodesic
flow of X̄ (see [27]) and that, for uniform lattices, it is the same as the volume entropy
!(X) = lim sup 1

R ln vX(x,R) of the manifold X. The function m(x), depending on the
center of the ball, is the Margulis function of X.

Since then, this result has been generalized in di↵erent directions. Notably, G.
Knieper showed in [24] that the volume growth function of a Hadamard space X (a
complete, simply connected manifolds with nonpositive curvature) of rank one admit-
ting uniform lattices is purely exponential 2, that is

vX(x,R) ⇣ e!(X)R

In general, he showed that vX(x,R) ⇣ R
d�1
2 e!(X)R for rank d manifolds; however,

as far as the authors are aware, it is still unknown whether there exists a Margulis
function for Hadamard manifolds of rank 1 with uniform lattices, i.e. a function m(x)
such that vX(x,R) ⇠ m(x)e!(X)R, even in the case of surfaces. Another remarkable
case is that of asymptotically harmonic manifolds of strictly negative curvature, where
the strong asymptotic homogeneity implies the existence of a Margulis function, even
without compact quotients, cp. [11].

In another direction, it seems natural to ask what happens for a Hadamard
space X of negative curvature admitting nonuniform lattices � (i.e. vol(�\X) < 1):
is vX purely exponential and, more precisely, does X admit a Margulis function?
Let us emphasize that if X also admits a uniform lattice then X is a symmetric space
of rank one (by [18], Corollary 9.2.2); therefore, we are interested in spaces which do
not have uniform lattices, i.e. the universal covering of finite volume, negatively curved
manifolds which are not locally symmetric.

It is worth to stress here that the orbital function of � is closely related to the
volume growth function of X, but it generally has, even for lattices, a di↵erent asymp-
totic behaviour than vX(x,R). A precise asymptotic equivalence fo v

�

was proved by
T. Roblin [30] in a very general setting, proving a dichotomy based on the finiteness
of the so-called Bowen-Margulis measure associated to �.

In order to state this dichotomy, let us recall some general definitions. The limit set
of a general non elementary discrete subgroup � of isometries of X is the subset ⇤(�) ⇢

2
We will systematically use the following convenient notation in the paper: given two functions

f, g : R+ ! R+, we write f
C

� g for R > R0 (or g
C

� f) if there exists C > 0 such that f(R)  Cg(R)

for these values of R. Similarly, f
C⇣ g means g

C

� f
C

� g. We simply write f � g and f ⇣ g when the

constants C and R0 are unessential.

The upper and lower exponential growth rates of the function f are respectively defined as:

!+
(f) = lim sup

R!+1
R�1

ln f(R) and !�
(f) = !(f) = lim inf

R!+1
R�1

ln f(R)

and we simply write !(f) when the two limits coincide.

Finally, we say that f is purely exponential if f ⇣ e!(f)R
, lower-exponential when lim sup

R!+1

f(R)

e!(f)R
= 0

and upper-exponential when lim inf

R!+1

f(R)

e!(f)R
= +1; when the weaker property lim sup

R!+1

f(R)

e!(f)R
= +1

holds, we say that f is weakly upper-exponential.
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X(1) of accumulation points of any orbit � · x in X. By Patterson’s construction
(see [30] for a precise description), there exists on ⇤(�) a family (µx)x2X of finite
measures, supported by ⇤(�), satisfying the following conditions: for any x, x0 2 X
and any g 2 �,

dµ
x

dµ
x

0
(⇠) = e��(�)b⇠(x,x

0
) and µ��1x = �⇤µx

where b⇠(x, x
0) = lim

y!⇠
d(x, y)� d(x0, y) is the Busemann function centered at ⇠ 2 ⇤(�).

When identifying the unit tangent bundle of X with (X(1)⇥X(1)��) ⇥ R
(where � denotes the diagonal in X(1)⇥X(1)), these two properties readily imply
that the measure e��(�)(b⌘(x,y)+b

⇠

(x,y)) d⌘ d⇠ dt is a Radon measure on UX, which is
invariant under the actions of both � and the translation flow on the third coordinate;
thus, it induces a measure µBM on the unit tangent bundle UX̄ of the quotient manifold
X̄ = �\X, which is invariant for the geodesic flow and called the Bowen-Margulis
measure.

T. Roblin proved that for any non-elementary discrete group of isometries � of a
CAT(-1) space X with non-arithmetic length spectrum3, one has:

(a) v
�

(x, y,R) ⇠ c
�

(x, y)e�(�)R if the measure µBM is finite;

(b) v
�

(x, y,R) = o(R)e�(�)R, where o(R) is infinitesimal, otherwise.

Thus, the behaviour of v
�

(x,R) strongly depends on the finiteness of the measure µBM ;
also, the asymptotic constant can be expressed in terms of µBM and of the family of

Patterson-Sullivan measures (µx) of �, as c�(x, y) =
kµ

x

k kµ
y

k
�(�)·kµ

BM

k .

In this paper we restrict our attention to lattices �, which are fundamental exam-
ples of geometrically finite groups; let us describe this class. Let C(�) be the convex
hull in X of the limit set ⇤(�) in X [ X(1); the group � acts properly discontin-
uously on C(�), the quotient N̄(�) = �\C(�) is called the Nielsen core of X̄. The
group � (or the quotient manifold X̄) is said to be geometrically finite when for some
" > 0 the "-neighborhood N̄"(�) of N̄(�) has finite volume. We refer to [8] for a
complete description of geometrical finiteness in variable negative curvature. When
� is a lattice, the Nielsen core N̄(�) equals X̄, thus � is clearly geometrically finite.
In contrast, the groups considered in [29] are generally not geometrically finite. In
section §4 we will recall a useful criterion (Finiteness Criterion (15), due to Dal’Bo-
Otal-Peigné), to decide whether a geometrically finite group has µBM (UX̄) < 1 or
not; hence, a precise asymptotics for v

�

(x,R) as in (a).

On the other hand, any convergent group � exhibits a behaviour as in (b), since it cer-
tainly has infinite Bowen-Margulis measure (by Poincaré recurrence, µBM (UX̄) < 1
implies that the geodesic flow is totally conservative, and this is equivalent to diver-
gence, by Hopf-Tsuji-Sullivan’s theorem). Notice that, whereas uniform lattices always
are divergent and with finite Bowen-Margulis measure, for nonuniform lattices � di-
vergence and condition (15) in general may fail. Namely, this can happen only in case
� has a “very large” parabolic subgroup P , that is such that �(P ) = �(�): we will call
exotic such a lattice �, and we will say that such a P is a dominant parabolic subgroup.

3
This means that the additive subgroup of R generated by the length of closed geodesics in G\X

is dense in R; it is the case, for instance, if dim(X) = 2, or when G = � is a lattice.
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Convergent, exotic lattices are constructed by the authors in [16]; also, one can find
in [16] some original counting results for the orbital function of � in infinite Bowen-
Margulis measure, more precise than (b).

However, as we shall see, the volume growth function vX has a wilder behaviour
than v

�

. In [14] we proved that for nonuniform lattices in pinched, negatively curved
spaces X, the functions v

�

and vX can have di↵erent exponential growth rates, i.e.
!(X) 6= �(�). In the Example 5.2 we will see that the function vX might as well have
di↵erent superior and inferior exponential growth rates !±(X) (notice, in contrast,
that �(�) always is a true limit).

The main result of the paper concerns finiteness of the Bowen-Margulis measure
and an aymptote for the volume growth function of 1

4

-pinched spaces with lattices:

Theorem 1.1 Let X be a Hadamard space with curvature �b2  KX  �a
2, and let

� be a nonuniform lattice of X. If X̄ = �\X has asymptotically 1/4-pinched curvature
(that is, for any ✏ > 0, the metric satisfies �k2

+

 KX  �k
2

� with k2
+

 4k2� + ✏
outside some compact set C̄✏ ⇢ X̄), then:

(i) � is divergent and the Bowen-Margulis measure µBM of UX̄ is finite;

(ii) !+(X) = !�(X) = �(�);

(iii) there exists a function m̄(x) 2 L1(X̄) such that vX(x,R) ⇠ m(x)e�(�)R, where
m(x) is the lift of m̄ to X.

From (i) it follows that the geodesic flow of any asymptotically 1

4

-pinched, nega-
tively curved manifold of finite volume is ergodic and totally conservative w.r. to µBM ,
by Hopf-Tsuji-Sullivan Theorem (see [33], [30]), contrary to the case of general nega-
tively curved manifolds of finite volume (e.g., those obtained from convergent lattices).
By [27], it also follows that µBM is the unique measure of maximal entropy for the
geodesic flow on UX̄ in this case.

Condition (iii) also implies that volume equidistributes on large spheres, i.e. the
volume v�X(x,R) of annuli in X of thickness � satisfies the precise asymptotic law:

v�X(x,R) ⇠ 2m(x) sinh(��(�))e!(X)R

The above theorem also covers the classical case of noncompact symmetric spaces of
rank one (where the proof of the divergence and the asymptotics is direct).

One may wonder about the meaning of the 1

4

-pinching condition. This turns out
to be an asymptotic, geometrical condition on the influence and wildness of parabolic
subgroups of � associated to the cusps of X̄ = �\X. Parabolic groups, being elemen-
tary, do not necessarily have a critical exponent which can be interpreted as a true
limit; rather, for a parabolic group of isometries P of X, one can consider the limits

�+(P ) = lim sup
R!1

1

R
ln vP (x,R), ��(P ) = lim inf

R!1

1

R
ln vP (x,R)

and the critical exponent �(P ) of the Poincaré series of P coincides with �+(P ).
The parabolic group P is called maximal when it is not a proper subgroup of some
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parabolic subgroup of �. Accordingly, we say that a lattice � is sparse if it has a max-
imal parabolic subgroup P such that �+(P ) > 2��(P ) (conversely, we will say that
� is parabolically 1

2

-pinched if it is not sparse). Such parabolic groups in �, together
with dominant parabolic subgroups, are precisely associated to cusps whose growth
can wildly change, and this can globally influence the growth function of X. Namely,
in section 4, we prove :

Theorem 1.2 Let X be a Hadamard manifold with pinched, negative curvature
�b2  KX  �a

2 < 0. If X has a nonuniform lattice � which is neither exotic nor
sparse, then � is divergent with finite Bowen-Margulis measure; moreover, vX ⇣ v

�

and X has a Margulis function m(x), whose projection is L1 on X̄ = �\X.

The divergence and finiteness of the Bowen-Margulis measure in Theorem 1.1
and Theorem 1.2 are both consequence of a critical gap between �(�) and the ex-
ponential growth rates �+(Pi) of all parabolic subgroups; this will be proved in §4.
In particular, we will see that any lattice � in a negatively curved, 1

4

-pinched space
is never exotic (nor sparse). For this, we will use an asymptotic characterization
of the hyperbolic lattices as the only lattices in spaces X with pinched curvature
�b2  KX  �a

2 realizing the least possible value for the topological entropy of
X̄ = �\X, i.e. satisfying �(�) = (n � 1)a. In the compact case, this result can be
deduced from Knieper’s work on spherical means (following the proof of Theorem
5.2, [24]), or from Bonk-Kleiner [4] (for convex-cocompact groups); on the other hand,
see [17] for a complete proof in the case of non-uniform lattices and the analysis of the
new di�culties arising in the non-compact case.

The existence of the Margulis function in Theorems 1.1 and 1.2 relies on a Count-
ing Formula (Proposition 3.1), proved in §3; the formula enables us to reduce the
computation of vX to the analytic profile of the cusps of X̄ and v

�

(so, in the last
instance, to T.Roblin’s asymptotics (a)&(b)).

The last part of the paper is devoted to studying sparse and exotic lattices, to un-
derstand the necessity of the 1

4

-pinching (or 1

2

-parabolically pinching) conditions. The
following result shows that Theorem 1.2 is the best that we can expect for Hadamard
spaces with quotients of finite volume.

Theorem 1.3 Let X be a Hadamard manifold with pinched negative curvature
�b2  KX  �a

2 < 0 admitting a nonuniform lattice �.

(i) If � is exotic and the dominant subgroups P satisfy �(�) = �+(P ) < 2��(P ), then
both vX and v

�

are purely exponential or lower-exponential, with the same exponential
growth rate !(X) = �(�). Namely:

• either µBM =1, and in this case vX is lower-exponential.
• or µBM <1, and then vX is purely exponential and X has a Margulis function;

The two cases can actually occur, cp. Examples 5.3(a)&(b).

(ii) If � is exotic and a dominant subgroup P satisfies �(�) = �+(P ) = 2��(P ), then
!(X) = �(�) but in general vX 6⇣ v

�

, and X does not admit a Margulis function.
Namely, there exist cases (Examples 5.4(a)&(b)) where:
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• µBM <1, with v
�

purely exponential and vX upper-exponential;

• µBM =1, with v
�

lower-exponential and vX upper-exponential.

Notice that, in all cases under consideration in this theorem, the equality !(X) = �(�)
holds, by Theorem 1.2 in [14], since �+(P )  2��(P ) (cp. also Corollary 3.3).
The proof of assertion (i) of Theorem 1.3 is given in section §4, with explicit examples
in section §5 (Examples 5.3); the examples proving assertion (ii) are also developed in
section §5 (Examples 5.4). We shall also see that all the examples mentioned in this
statement can be obtained as lattices in (1

4

� ✏)-pinched spaces, for arbitrary ✏ > 0,
which shows the optimality of the 1

4

-pinching condition.

On the other hand, if � is sparse, one can even have !+(X) > !�(X) > �(�), and the
Example 5.2 shows that virtually any asymptotic behaviour for vX can occur. Thus,
the case of exotic lattices with a parabolic subgroup such that �+(P ) = 2��(P ) can be
seen as the critical threshold where a transition happens, from functions v

�

, vX with
same asymptotic behaviour to functions with even di↵erent exponential growth rate.

Notice at last that the condition �+(P ) < 2��(P ) is satisfied when b2

a2
< 1

4

, and that
this last condition implies that the group P is abelian [4].

2 Growth of parabolic subgroups and of lattices modulo
parabolic subgroups

Throughout all the paper, unless otherwise stated, X will be a Hadamard space of
dimension n, with pinched negative sectional curvature �b2  KX  �a

2 < 0.

For x, y 2 X and ⇠ belonging to the geometric boundary X(1), we will de-
note [x, y] (resp. [x, ⇠]) the geodesic segment from x to y (resp. the ray from x to ⇠).
We will repeatedly make use of the following, classical result in strictly negative curva-
ture (see for instance [9]): there exists ✏(a,#) = 1

|a| log(
2

1�cos#) such that any geodesic

triangle xyz in X making angle # = \z(x, y) at z satisfies:

d(x, y) � d(x, z) + d(z, x)� ✏(a,#). (1)

Let b⇠(x, y) = limz!⇠ d(x, z) � d(z, y) be the Busemann function centered at ⇠.
The level set @H⇠(x)={y | b⇠(x, y)=0} (resp. the suplevel set H⇠(x)={y | b⇠(x, y)�0}
is the horosphere (resp. the horoball) with center ⇠ and passing through x.
From (1) we easily deduce the following:

Lemma 2.1 For any d > 0, there exists ✏
1

= ✏
1

(a, d) � ✏(a, ⇡
2

) with the following
property: given two disjoint horoballs H

1

, H
2

at distance d = d(H
1

, H
2

) = d(z
1

, z
2

)
with zi 2 @Hi, then for any x 2 H

1

and y 2 H
2

we have

d(x, z
1

) + d(z
1

, z
2

) + d(z
2

, y)� ✏
1

(a, d)  d(x, y)  d(x, z
1

) + d(z
1

, z
2

) + d(z
2

, y).

Proof. As KX  �a2 and horoballs are convex, for any y 2 H
2

the angle
#(y) = \z1z2, y satisfies tan#(y)  1

sinh(d/|a|) (cp. for instance [31], Prop.8). Then,
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we have \z1x, y �
⇡
2

� #(y) � #(d) with #(d) > 0 for d 6= 0, hence, by (1),

d(x, y) � d(x, z
1

) + d(z
1

y)� ✏(a,#(d)) � d(x, z
1

) + d(z
1

, z
2

) + d(z
2

, y)� ✏
1

(a, d)

for ✏
1

(a, d) = ✏(a,#(d)) + ✏(a, ⇡
2

).2

Let d⇠ denote the horospherical distance between two points on a same horosphere
centered at ⇠. If  ⇠,t : X ! X denotes the radial flow in the direction of ⇠, we define:

t⇠(x, y) =

⇢
inf{t > 0 |d⇠( ⇠,t+�

(x), ⇠,t(y)) < 1} if b⇠(x, y) = � � 0;
inf{t > 0 |d⇠( ⇠,t(x), ⇠,t��

(y)) < 1} if b⇠(x, y) = � < 0.
(2)

If y is closer to ⇠ than x, let x
�

= [x, ⇠[\@H⇠(y): then, t⇠(x, y) represents the minimal
time we need to apply the radial flow  ⇠,t to the points x

�

and y until they are at
horospherical distance less than 1. Using (1) and the lower curvature bound KX � �b

2,
we obtain in [14] the following estimate, which is also crucial in our computations:

Approximation Lemma 2.2

There exists ✏
0

= ✏
0

(a, b) � ✏(a, ⇡
2

) such that for all x, y 2 X and ⇠ 2 X(1) we have:

2t⇠(x, y) + |b⇠(x, y)|� ✏0  d(x, y)  2t⇠(x, y) + |b⇠(x, y)|+ ✏
0

In this section we give estimates for the growth of annuli in a parabolic subgroup
and in quotients of a lattice by a parabolic subgroup, which will be used later. So, let us
fix some notations. We let A�(x,R) = B

�
x,R+ �

2

�
\B

�
x,R� �

2

�
be the annulus of

radius R and thickness � around x. For a group � of isometries of X, we will consider
the orbital functions

vG(x, y,R) = # (B(x,R) \Gy) v�G (x, y,R) = #
�
A�(x,R) \Gy

�

and we set vG(x,R) = vG(x, x,R), v�G (x,R) = v�G (x, x,R) and v�G (x,R) = ; for � < 0.
We will also need to consider the growth function of coset spaces, endowed with the
natural quotient metric: if H < G, we define dx(g1H, g

2

H) := d(g
1

Hx, g
2

Hx) and

vG/H(x,R) := #{gH | |gH|x = dx(H, gH) < R}

v�G/H(x,R) = vG/H

✓
x,R+

�

2

◆
� vG/H

✓
x,R�

�

2

◆
.

We will use analogous notations for the growth functions of balls and annuli in the
spaces of left and double cosets H\G, H\G/H with the metrics

dx(Hg
1

, Hg
2

) := d(Hg
1

x,Hg
2

x) = |g�1

1

Hg
2

|x

dx(Hg
1

H,Hg
2

H) := d(Hg
1

Hx,Hg
2

Hx) = |g�1

1

Hg
2

H|x .

The growth of the orbital function of a bounded parabolic group P is best ex-
pressed by introducing the horospherical area function. Let us recall the necessary
definitions:
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Definitions 2.3 Let P be a bounded parabolic group of X fixing ⇠ 2 X(1): that is,
acting cocompactly on X(1)�{⇠} (as well as on every horosphere @H centered at ⇠).
Given x 2 X, let D(P, x) be a Dirichlet domain centered at x for the action of P on X;
that is, a convex fundamental domain contained in the closed subset

D(P, x) = {y 2 X | d(x, y)  d(px, y) for all p 2 P}

We set Sx = D(P, x) \ @H⇠(x) and Cx = D(P, x) \ H⇠(x), and denote by Sx(1) the
trace at infinity 4 of D(P, x), minus ⇠; these are, respectively, fundamental domains for
the actions of P on @H⇠(x), H(x) and X(1)�{⇠}.
The horospherical area function of P is the function

AP (x,R) = vol [P\ ⇠,R (@H⇠(x))] = vol [ ⇠,R (Sx)]

where the vol is the Riemannian measure of horospheres. We also define the cuspidal
function of P , which is the function

FP (x,R) = vol [B(x,R) \H⇠(x)]

that is, the volume of the intersection of a ball centered at x and the horoball centered
at ⇠ and passing through x. Notice that the functions AP (x,R),FP (x,R) only depend
on the choice of the initial horosphere @H⇠(x).

Remark 2.4 Well-known estimates of the di↵erential of the radial flow (cp. [21]) yield,
when �b2  KX  �a

2 < 0,

e�bt
kvkkd ⇠,t(v)k e�at

kvk (3)

Therefore we deduce that, for any � > 0,

e�(n�1)b�


AP (x,R+�)

AP (x,R)
 e�(n�1)a� (4)

The following Propositions show how the horospherical area AP and the cuspidal
function FP are related to the orbital function of P ; they refine and precise some
estimates given in [14] for vP (x,R).

Proposition 2.5 Let P be a bounded parabolic group of X fixing ⇠, with diam(Sx)  d.
There exist C = C(n, a, b, d) and C 0 = C 0(n, a, b, d;�) such that:

vP (x, y,R)
C
⇣ A

�1

P

✓
x,

R+ b⇠(x, y)

2

◆
8R � b⇠(x, y)+R

0

(5)

v�P (x, y,R)
C0
⇣ A

�1

P

✓
x,

R+ b⇠(x, y)

2

◆
8R � b⇠(x, y)+R

0

and 8� > �
0

(6)

for explicit constants R
0

and �
0

only depending on n, a, b, d.
4
The trace at infinity A(1) of a subset A ⇢ X is defined as the intersection of X(1) with the

closure of A in X [X(1).
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Proposition 2.6 Same assumptions as in Proposition 2.5. We have:

FP (x,R)
C
⇣

Z R

0

AP (x, t)

AP

�
x, R+t

2

�dt 8R � R
0

(7)

Remark 2.7 More precisely, we will prove (and use later) that:

(i) vP (x, y,R)
C
� A

�1

P

⇣
x,

R+b
⇠

(x,y)
2

⌘
for all R > 0;

(ii) v�P (x, y,R)
C0

� A

�1

P

⇣
x,

R+b
⇠

(x,y)
2

⌘
for all �, R>0;

(iv) FP (x,R)
C
�

R
R

0

A
P

(x,t)

A
P

(x,R+t

2 )
dt for all R > 0.

As a direct consequence of (7) and (5) we have (see also Corollary 3.5 in [14]):

Corollary 2.8 Let P be a bounded parabolic group of X. Then:

��(P )  !�(FP )  !
+(FP )  max{�+(P ), 2(�+(P )� ��(P ))} (8)

Proof of Proposition 2.5. Since vP (x, y,R) = vP (y, x,R) and AP (x,R) =
AP (y,R�b⇠(x, y)), we can assume that t = b⇠(x, y) � 0. If z 2 @H⇠(y) and d(x, z) = R,
we know by Lemma 2.2 that 2t⇠(x, z) + t � ✏

0

 d(x, z)  2t⇠(x, z) + t + ✏
0

, so

|t⇠(x, z) �
R�t
2

|  ✏
0

/2. We deduce that d⇠

⇣
 
⇠,

R+t+✏0
2

(x), 
⇠,

R�t+✏0
2

(z)
⌘
 1, so the

set  
⇠,

R�t+✏0
2

(B(x,R) \ @H⇠(y)) is contained in the unitary ball B+ of the horosphere

@H⇠(x+), centered at x+=  
⇠,

R+t+✏0
2

(x). Similarly, if R > t + ✏
0

then t⇠(x, z) > 0,

so d⇠

⇣
 
⇠,

R+t�✏0
2

(x), 
⇠,

R�t�✏0
2

(z)
⌘
� 1, and the set  

⇠,
R�t�✏0

2
(B(x,R) \ @H⇠(y)) con-

tains the unitary ball B� of @H⇠(x�), centered at the point x� =  
⇠,

R+t�✏0
2

(x).

We know that, by Gauss’ equation, the sectional curvature of horospheres of X is be-
tween a2 � b2 and 2b(b� a) (see, for instance, [5], §1.4); therefore, there exist positive
constants v� = v�(a, b) and v+ = v+(a, b) such that vol(B+) < v+ and vol(B�) > v�.
Now, let Sy =  ⇠,t(Sx) be the fundamental domain for the action of P on @H⇠(y)
deduced from Sx. There are at least vP(x, y,R� d) distinct fundamental domains pSy

included in B(x,R) \ @H⇠(y); since the radial flow  ⇠,t is equivariant with respect to
the action of P on the horospheres centered at ⇠, there are also at least vP (x, y,R� d)
distinct fundamental domains  

⇠,
R�t+✏0

2
(pSy) included in  

⇠,
R�t+✏0

2
(B(x,R)\@H⇠(y)).

We deduce that vP (x, y,R�d)·AP (x,
R+t+✏0

2

) < v+ and, by (4), this gives vP (x, y,R)
C
�

A

�1

P (x, R+t
2

) for all R � 0. On the other hand, if R > t + ✏
0

, we can cover the set
B(x,R) \ @H⇠(y) with vP (x, y,R + d) fundamental domains pSy, with p 2 P ; then,
again,  

⇠,
R�t�✏0

2
(B(x,R)\ @H⇠(y)) can be covered by vP (x, y,R+ d) fundamental do-

mains  
⇠,

R�t�✏0
2

(pSy) as well, hence we deduce that vP (x, y,R+d)·AP (x,
R+t�✏0

2

) � v�.

This implies that vP (x, y,R)
C
� A

�1

P (x, R+t
2

) for all R > t+R
0

, for R
0

= ✏
0

+ d and a
constant C = C(n, a, b, d).
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To prove the weak equivalence (6), we just write, for R+ �

2

> t+R
0

:

v�P (x, y,R) = v�P (x, y,R+�/2)�v�P (x, y,R��/2) �
C�1

AP

⇣
R+t+�/2

2

⌘
�

C

AP

⇣
R+t��/2

2

⌘

�

C�1e(n�1)a�
4
� Ce�(n�1)a�

4

AP

�
x, R+t

2

� = 2 sinh


1

4
(n� 1)a�� lnC

�
·A

�1

P

✓
R+ t

2

◆

again by (4), if � > �
0

= 4 lnC
(n�1)a . Reciprocally, we have for all R,� > 0:

v�P (x, y,R)  vP (x, y,R+
�

2
) 

C

AP

⇣
x, R+t+�/2

2

⌘


C 0(n, a, b, d;�)

AP

�
x, R+t

2

� 2

Proof of Proposition 2.6. We just integrate (5) over a fundamental domain Cx for
the action of P on H⇠(x):

FP (x,R)=
X

p2P
vol[B(x,R) \ pCx]=

Z

C
x

X

p2P
1B(x,R)

(pz) dz=

Z

C
x

vP (x, y,R) dy

so, integrating over each slice  ⇠,t(Sx) by the coarea formula, we obtain
Z R�R0

0

Z

 
⇠,t

(S
x

)

A

�1

P

✓
x,

R+ t

2

◆
dt

C
� FP (x,R)

C
�

Z R

0

Z

 
⇠,t

(S
x

)

A

�1

P

✓
x,

R+ t

2

◆
dt

(the left inequality holding for R > R
0

). By (4), both sides are ⇣ to the integralZ R

0

AP (x, t)

AP (x,
R+t
2

)
dt, up to a multiplicative constant c = c(n, a, b, d).2

Remark 2.9 Thus, we see that the curvature bounds imply that v�P (x,R) ⇣ vP (x,R)
for � and R large enough. This also holds in general for non-elementary groups � with

finite Bowen-Margulis measure, as in this case v�
�

(x,R) ⇠ 2kµ
x

k2
kµ

BM

k sinh[
�

2

�(�)]e�(�)R by
Roblin’s asymptotics. On the other hand, it is unclear whether the weak equivalence
v�
�

⇣ v
�

holds for non-elementary lattices �, when kµBM k=1.

In the next section we will also need estimates for the growth of annuli in the spaces
of left and right cosets of a lattice � of X, modulo a bounded parabolic subgroup P .
Notice that, if P fixes ⇠ 2 X(1), the function vP\�(x,R) counts the number of points
�x 2 �x falling in the Dirichlet domain D(P, x) of P with d(x, �x) < R; on the
other hand, the function v

�/P (x,R) counts the number of horoballs �H⇠(x) at distance
(almost) less than R from x. It is remarkable that, even if these functions count ge-
ometrically distinct objects, they are weakly asymptotically equivalent, as the follow-
ing Proposition will show. Actually, let H⇠ be a horoball centered at the parabolic
fixed point ⇠ of P < �; we call depth(H⇠) the minimal distance min

��P d(H⇠, �H⇠).
Then, for Sx defined as in Definition 2.3 we have:

Proposition 2.10 Let � be a torsionless, non-elementary, discrete group of isometries
of X, let P a bounded parabolic subgroup of �, and let x 2 X be fixed. Assume that

10



max{diam(Sx), 1/depth(H⇠(x))}  d, and let ` be the minimal displacement d(x, �x) of
the elements � 2 � whose domains of attraction U

±(�, x) = {y | d(�±1x, y)  d(x, y)}
are included in the Dirichlet domain D(P, x).

Then, there exists a constant �
0

= �
0

(a, d) such that, for all �, R > 0:

(i) v���0
P\� (x,R)  v�

�/P (x,R)  v�+�0
P\� (x,R);

(ii) 1

2

v��2`
�

(x,R)  v�P\�(x,R)  v�
�

(x,R);

(iii) 1

2

v���0�2`
�

(x,R)  v�
�/P (x,R)  v�+�0

�

(x,R);

(iv) 1

4

v���0�4`
�

(x,R)  v�P\�/P (x,R)  v�
�

(x,R).

Notice that (iv) strenghtens a result of S. Hersonsky and F. Paulin on the number
of rational lines with depth smaller than R (cp. [20] Theorem 1.2, where the authors
furthermore assume the condition �P < �

�

). Actually, let H⇠ be the largest horosphere
centered at ⇠ non intersecting any other �H⇠ for � 6= e, and recall that the depth
of a geodesic c = (⇠, �⇠) is defined as the length of the maximal subsegment ĉ ⇢ c
outside �H⇠. The double coset space P\ (��P ) /P can be identified with the set of
oriented geodesics (⇠, �⇠) of X with � 2 ��P . Then, if x 2 @H⇠, the counting function
v�P\(��P )/P (x,R) corresponds to the number of geodesics of X̄ = �\X which travel a

time about R outside the cusp C̄ = P\H⇠, before entering and definitely staying (in
the future and in the past) in C̄.

Proof. The right-hand inequalities in (ii), (iii), (iv) are trivial.
Let us prove (i). We first define two sections of the projections P\�  � ! �/P .
Consider the fundamental domain Sx(1) for the action of P onX(1)�{⇠} given in 2.3,
and choose for each � 2 �, a representative �̂ of �P which minimizes the distance to x.

Then, we set
b� = {b� | �P 2 �/P}

�
0

= {�
0

| �
0

2 �, �
0

⇠ 2 Sx(1)} [ {e}.

We have bijections b� ⇠= �/P and �
0

⇠= P\�, as Sx(1) is a fundamental domain.
Moreover, every �

0

2 �
0

almost minimizes the distance to x in its right coset P�
0

.
Actually, for all � 2 � set z(�) = (⇠, �⇠)\ @H⇠(x) and z0(�) = (⇠, �⇠)\ �@H⇠(x); then,
for all p 2 P we have, by Lemma 2.1

d(x, p�
0

x) � d(x, pz(�)) + d(pz(�), pz0(�)) + d(pz0(�), p�
0

x)� ✏
1

(a, d) � d(x, �
0

x)� c
(9)

as d(H⇠(x), p�0H⇠(x)) = d(pz(�), pz0(�)), for c = 2d+ ✏
1

(a, d).
We will now define a bijection between pointed metric spaces i : (P\�, x

0

)! (�/P, x
0

)
which almost-preserves the distance to their base point x

0

= P (with respect to their
quotient distances | · |x = dx(P, ·) as seen at the beginning of the section), as follows.
For every � 2 � we can write � = b�p� , for uniquely determined b� 2 b� and p� 2 P ;
given a right coset P�, we take �

0

2 �
0

representing P� and then set i(P�) := p�0b�0P .
The map i is surjective. Actually, given �P , we take p 2 P such that p�⇠ 2 Sx(1),

11



so that P� = P�
0

, for �
0

= p� 2 �
0

; then, we write �
0

= b�
0

p�0 , and we deduce that
i(P�) = i(P�

0

) = i(Pb�
0

p�1) = p�1b�
0

P = p�1�
0

p�1

�0 P = �P .

We now check that i is injective. Given �
0

= b�
0

p�0 and �0
0

= b�0
0

p�00 in �
0

representing

two right cosets P� and P�0, assume that p�0b�0P = p�00
b�0
0

P . Then, b�
0

⇠ = pb�0
0

⇠

for p = p�1

�0 p�00 2 P , which yields p�0 = p�00 as b�
0

⇠, b�0
0

⇠ 2 Sx(1) and Sx(1) is a

fundamental domain for the left action of P ; so, b�
0

P = b�0
0

P , which implies that b�
0

= b�0
0

too (as b� is a section of �/P ). Therefore, P� = P�
0

= Pb�
0

p�0 = P b�0
0

p�00 = P�0
0

= P�0.
To show that i almost preserves | |x, we notice that, given a class P� and writing its
representative in �

0

as �
0

= b�
0

p�0 , we have

|P�|x  |�
0

|x  d(x, b�
0

x) + d(b�
0

x, b�
0

p�0x) = |b�
0

|x + |p�0 |x

while, by (9) and by Lemma 2.1

|P�|x � |�
0

|x � c � d(x, z0(�
0

)) + d(z0(�
0

), b�
0

p�0)� ✏1(a, d)� c � |b�
0

|x + |p�0 |x � 2c

as d(z0(�
0

), b�
0

x) < d. On the other hand

|i(P�)|x = |p�0b�0P |x  d(x, p�0x) + d(p�0x, p�0b�0Px) = |p�0 |x + |b�
0

|x

while, as z(p�0b�0) = p�0z(b�0) and z0(p�0b�0) = p�0z
0(b�

0

), we get by Lemma 2.1

|i(P�)|x � d(x, p�0z(b�0)) + d(p�0z(b�0), p�0b�0Px)� ✏
1

(a, d) � |p�0 |x + |b�
0

|x � c.

This shows that |P�|x � c  |i(P�)|x  |P�|x + 2c. We then immediately deduce that
vP\�(x,R� 2c)  v

�/P (x,R)  vP\�(x,R+ c), as well as (i) for �
0

= 4c.

The proof of the left-hand inequality in (ii) is a variation for annuli of a trick due to
Roblin, cp. [30]. Actually, as L(P ) ( L(�), we can choose a �̄ 2 � with d(x, �̄x) = `
and such that the domains of attraction U

±(�̄, x) are included in the domain D(P, x).
Let vD(P,x)(x,R) be the number of points of the orbit �x falling in D(P, x) \B(x,R).

We have:
v�
�

(x,R)  v�D(P,x)(x,R) + v�+2`
D(P,x)(x,R)  2v�+2`

D(P,x)(x,R)

since, for �x 2 A�(x,R), either �x 2 D(P, x), or �̄�x 2 D(P, x) and �̄�x 2 A�+2`(x,R).
As the points of P falling in D(P, x) minimize the distance to x modulo the left action
of P , we also have v�+2`

D(P,x)(x,R) = v�+2`
P\� (x,R), which proves (ii).

Assertion (iii) follows directly from (i) and (ii). To show (iv), we need to estimate
the number of classes �P modulo the left action of P , that is the elements of b� such
that b�x belongs to the fundamental domain D(P, x). We choose an element �̄ 2 � with
U

±(�̄, x) ⇢ D(P, x) as before, and apply again Roblin’s trick to the classes �P . The set
b�x can be parted in two disjoint subsets: the subset b�

1

:= b�\D(P, x), and the subset
b�
2

:= b� \ D(P, x)c, whose elements b� then satisfy �̄b� 2 D(P, x) and |�̄b�|x  |b�|x + `.
Then v�

�/P (x,R) = v�b
�1
(x,R) + v�b

�2
(x,R)  2v�+2`

P\�/P (x,R) and we conclude by (iii).2
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3 Orbit-counting estimates for lattices

In this section we give estimates of the orbital function v
�

(x, y,R) and of vX(R) in
terms of the orbital function of the parabolic subgroups Pi and the associated cuspidal
functions FP

i

of �. These estimates will be used in §4 and §5; they stem from an
accurate dissection of large balls in compact and horospherical parts, assuming that
ambient space X admits a nonuniform lattice action.

Let us introduce the following notation, which will be used throughout the next
sections of the paper: if f and g are two real functions, the discrete convolution f ⇤

�

g
of f and g with gauge � is defined by

(f ⇤
�

g)(R) =

h+k=bR/�cX

h,k�1

f(h�)g(k�).

For nondecreasing functions f and g, it clearly holds:

� · (f ⇤
�

g) (R��)  (f ⇤ g) (R) =

Z R

0

f(t)g(R� t)dt  2� · (f ⇤
�

g) (R+ 2�).

Let us recall some useful results due to B. Bowditch [8] concerning the structure
of the limit set L(�) and of X̄:

(a) L(�) = X(1) and it is the disjoint union of the radial limit set Lrad(�) with
finitely many orbits Lbp� = �⇠

1

[. . .[�⇠m of bounded parabolic fixed points; this means
that each ⇠i 2 Lbp� is the fixed point of some maximal bounded parabolic subgroup
Pi of �;

(b) (Margulis’ lemma) there exist closed horoballs H⇠1 , . . . , H⇠
m

centered respec-
tively at ⇠

1

, . . . , ⇠m, such that gH⇠
i

\H⇠
j

= ; for all 1  i, j  m and all � 2 �� Pi;

(c) X̄ can be decomposed into a disjoint union of a compact set K̄ and finitely
many “cusps” C̄

1

, ..., C̄m: each C̄i is isometric to the quotient of H⇠
i

by the maximal
bounded parabolic group Pi ⇢ �. We refer to K̄ and to C̄ = [iC̄i as to the compact
core and the cuspidal part of X̄.

Throughout this section, we fix x 2 X and we consider a Dirichlet domain D(�, x)
centered at x; this is a convex fundamental subset, and we may assume that D contains
the geodesic rays [x, ⇠i[. Accordingly, setting Si = D\@H⇠

i

and Ci = D\H⇠
i

' Si⇥R+

,
the fundamental domain D can be decomposed into a disjoint union:

D = K [ C

1

[ · · · [ Cm

where K is a convex, relatively compact set containing x in its interior (projecting to
a subset K̄ in X̄), while Ci and Si are, respectively, connected fundamental domains
for the action of Pi on H⇠

i

and @H⇠
i

(projecting respectively to subsets C̄i, S̄i of X̄).

Finally, as L(Pi) = {⇠i}, for every 1  i  m we can find an element �i 2 �, with
`i = d(x, �ix), which is in Schottky position with Pi relatively to x, i.e. such that the
domains of attraction U

±(�i) = {y | d(�±1

i x, y)  d(x, y)} are included in the Dirichlet
domain D(Pi, x), as in Proposition 2.10.

For the following, we will then set d = max{diam(K), diam(Si), 1/depth(H⇠
i

), `i} � ✏0.
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Proposition 3.1 (Counting Formula)

Assume that x, y 2 X project respectively to the compact core K̄ and to a cuspidal end
C̄i of X̄ = �\X. There exists C 00 = C(n, a, b, d) such that:

[v
�

(x, ·) ⇤vP
i

(x, y, ·)](R�D
0

)
C00

� v
�

(x, y,R)
C00

� [v
�

(x, ·) ⇤vP
i

(x, y, ·)](R+D
0

) 8R�0

for a constant D
0

only depending on n, a, b, d.

Proof. We will write, as usual, |�|x = d(x, �x) and |�P |x = d(x, �Px), and choose a
constant� > max{R

0

,�
0

, 2�
0

+4d}, where R
0

,�
0

, �
0

are the constants of Propositions
2.5 and 2.10. We first show that

B(x,R) \ �y ⇢
N[

k = 1

[

�̄ 2 �, |�̄|  k�

B (�̄x, (N � k)�) \ (�̄Pi)y (10)

for N = bR
�

c + 2. Actually, let �y 2 B(x,R) \ �H⇠
i

and set ȳi = [x, �⇠] \ �@H⇠
i

.
By using the action of the group �Pi�

�1 on �H⇠
i

, we can find �̄ = �p, with p 2 Pi,
such that ȳi 2 �̄Ci. Since the angle \ȳ

i

(x, �y) at ȳi is greater than
⇡
2

, we have:

d(x, �y)  d(x, ȳi) + d(ȳi, �y)  d(x, �y) + ✏
0

< R+ ✏
0

with |�̄|  d(x, ȳi) + d < R+ d+ ✏
0

 N�. Then, if k�  |�̄| < (k + 1)�, we deduce

d(�̄x, �y)  d(ȳi, �y) + d  R+ ✏
0

� d(x, �̄x) + 2d < (N � k)�

which shows that �y = �̄p�1y 2 B(�̄x, (N�k)�)\(�̄Pi)y = �̄ [B(x, (N � k)�) \ Piy].
Thus, we obtain:

v
�

(x, y,R) 
NX

k=1

v
�

(x, k�) · vP
i

(x, y, (N � k)�) � v
�

⇤ vP
i

(R+ 2�)

This proves the right hand side of our inequality.
The left hand is more delicate, as we need to dissect the ball B(x,R) in disjoint annuli.
So, consider the set b�i of minimal representatives of �/Pi as in the proof of Proposition
2.10. We have:

A4�(x,R) \ �y �
NG

k=0

G

b� 2 b
�

i

k�� �
2  |b�| < k�+

�
2

A� (b�x, (N � k)�) \ (b�Pi)y (11)

for N = bR
�

c + 1. In fact, given �y = b�piy 2 A�(b�x, (N�k)�) with b�x 2 A�(x, k�)
we have again

N�� 2�  |b�|+ d(b�x, �y)� 2d� ✏
0

 d(x, �y)  |b�|+ d(b�x, �y) < N�+�

as � > 2d + ✏
0

, hence �y 2 A4�(x,R). Notice that (11) is a disjoint union, as the
annuli with the same center do not intersect by definition, while for b� 6= b�0 the orbits
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b�Piy and b�0Piy lie on di↵erent horospheres b�Hi 6= b�0Hi, which are disjoint by Margulis’
Lemma. From (11) and by Proposition 2.10 we deduce that for all R > 0 it holds:

v4�
�

(x, y,R) �
1

2

NX

k=0

v
�/2
�

(x, k�) · v�P
i

(x, y, (N � k)�) (12)

as � > 2`i. Now, we set hi = b⇠
i

(x, y) and we sum (12) over annuli of radii Rn = n�,
and we get:

v�(x, y,R) �
1

4

bR

� c�2X

n=0

v4�� (x, y, n�) �

bR

� c�1X

k=0

2

4
bR

� c�1X

n�k

v
�/2
� (x, (n� k)�)

3

5
· v�

P

i

(x, y, k�) �

�

bR

� c�1X

k�h

i

� +1

v� (x,R� (k + 2)�) · v�
P

i

(x, y, k�)
C

0

�

bR

� c�1X

k=
h

i

� +1

v� (x,R� (k + 2)�)

A

P

i

�
x, k�+h

i

2

� (13)

as v�P
i

(x, y, k�) � A

�1

P
i

⇣
x, k�+h

i

2

⌘
if k� � hi +� > hi +R

0

by Proposition 2.5.

Using again Proposition 2.5 and (4), it is easily verified that the expression in (13)
is greater than the continuous convolution v

�

(x, ·) ⇤ vP
i

(x, y, ·) (R + 4�), up to a
multiplicative constant CC 0�. This ends the proof, by taking D

0

= 4�.2

The Counting Formula enables us to reduce the estimate of the growth function
vX to a group-theoretical calculus, that is to the estimate of a the convolution of v

�

with the cuspidal functions FP
i

of maximal parabolic subgroups Pi of �:

Proposition 3.2 (Volume Formula)

There exists a constant C 000 = C 000(n, a, b, d, vol(K)), such that:

"
v�(x, ·) ⇤

X

i

F

P

i

(x, ·)

#
(R�2D0)

C

000

� v
X

(x,R)
C

000

�

"
v�(x, ·)⇤

X

i

F

P

i

(x, ·)

#
(R+2D0) 8R�0 (14)

for D
0

= D
0

(n, a, b, d) as in Proposition 3.1.

Proof. Let hi = d(x,H⇠
i

); we may assume that the constants R
0

, D
0

of Propositions
2.5 and 3.1 satisfy D

0

� d � diam(K) � hi � R
0

. Now call Si(h) =  ⇠
i

,h[Si];
integrating v

�

(x, y,R) over the fundamental domain D yields, by Proposition 3.1:

vX(x,R+2D
0

) =

Z

D
v
�

(x, y,R+2D
0

)dy =

Z

K
v
�

(x, y,R+2D
0

)dy+
mX

i=1

Z

C
i

v
�

(x, y,R+2D
0

)dy

C00

�

mX

i=1

Z R+D0

2h
i

v
�

(x,R+ 2D
0

� t)

"Z t�h
i

h
i

Z

S
i

(h)
vP

i

(x, y, t) dy dh

#
dt

which then gives by Propositions 2.5 and 2.6, as h = b⇠
i

(x, y)  t� hi < t�R
0

,

Z R+D0

2h
i

v
�

(x,R+ 2D
0

� t)

"
mX

i=1

Z t�h
i

h
i

AP
i

(x, h)

AP
i

�
x, t+h

2

�dh
#
dt
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�

Z R+D0�2h
i

0

v
�

(x,R� t)

2

4
mX

i=1

Z t

0

AP
i

(x, s+ hi)

AP
i

⇣
x, t+s+3h

i

2

⌘ds

3

5 dt �

Z R

0

v
�

(x,R� t)
mX

i=1

FP
i

(x, t)dt.

Reciprocally, we have v
�

(x,R�D
0

)  v
�

(x, y,R)  v
�

(x,R+D
0

) so again by Propo-
sition 3.1 and Remarks 2.7 we obtain

vX(x,R� 2D
0

)
C00

� vol(K) · v
�

(x,R�D
0

) +
mX

i=1

Z

C
i

Z R�2D0

0

v
�

(x, t)vP
i

(x, y,R� t)dt

�
dy

C000

� v
�

(x,R�D
0

) +

Z R�2D0

0

v
�

(x, t)

"
mX

i=1

Z R�t

0

AP
i

(x, h)

AP
i

�
x, R�t+h

2

�dh
#
dt

as vP
i

(x, y,R � t) = 0 for R � t < b⇠
i

(x, y) = h. This proves the converse inequality,

since v
�

(x,R�D
0

) � v
�

(x,R�D
0

)FP
i

(R
0

)  1

D0�R0

R R�R0

R�D0
v
�

(x, t)FP
i

(x,R� t)dt.2

As a consequence of the Volume Formula and of Corollary 2.8, we deduce5:

Corollary 3.3 If FP
i

are the cuspidal functions of the parabolic subgroups of �:

(i) !+(X) = max{�(�),!+(FP1), ...,!
+(FP

m

)}.

(ii) !+(X) = !�(X) = �(�) if � is 1

2

-parabolically pinched.

4 Margulis function for regular lattices

In this section we assume that � is a lattice which is neither sparse nor exotic.
To prove the the divergence of the Poincaré series of �, we will need a general criterion
which can be found in [12], [15]:

Divergence Criterion. Let � be a geometrically finite group: if �+(P ) < �(�)
for every parabolic subgroup P of �, then � is divergent.

From the divergence, we will then deduce the finiteness of the Bowen-Margulis measure
by the following result, due to Dal’Bo-Otal-Peigné (see [12]):

Finiteness Criterion. Let � be a divergent, geometrically finite group, X̄ = �\X.
We have µBM (UX̄) <1 if and only if for every maximal parabolic subgroup P of �

X

p2P
d(x, px)e��(�)d(x,px) < +1. (15)

5
Part (i) of this corollary already appears in [14], where an upper estimate for v

X

is proved.

Notice that in [14] we erroneously stated that also !�
(X) = max{�(�),!�

(F
P1), ...,!

�
(F

P

m

)}; an
explicit counterexample to this is given in Example 5.2.
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Proof of Theorem 1.2. Let � be a nonuniform lattice of X which is neither
sparse nor exotic. As � is not exotic, it satisfies the gap property �(P ) < �(�) for
all parabolic subgroups; by the Divergence and Finiteness Criterion recalled in §1, we

deduce that the group is divergent and that µBM (UX̄) <1. Therefore v
�

(x,R)
c�(x)
⇣

e�(�)R is purely exponential (for some c
�

(x) depending on �, x). We will now show that
X has a Margulis function.
Let D be the fundamental domain for � and Pi the maximal parabolic subgroup fixing
⇠i as at the beginning of §3: we call w(x, y,R) = v

�

(x, y,R)e��(�)R, so that have

v
X

(x,R)

e�(�)R
=

Z

D

v�(x, y,R)

e�(�)R
dy =

Z

K
w(x, y,R)dy +

mX

i=1

Z

C
i

w(x, y,R)dy (16)

We know that v
�

(x, y,R)  v
�

(x,R + d)  c
�

(x)e�(�)R for y 2 K, so we can pass to
the limit for R ! 1 under the integral sign in the first term. For the integrals over
the cusps, we have:

w(x, y,R)
C

00

�

[v�(x, ·) ⇤ vP
i

(x, y, ·)](R+D0)

e�(�)R
c�(x)
�

Z 1

b

⇠

i

(x,y)

e��(�)t

A

P

i

⇣
x,

b

⇠

i

(x,y)+t

2

⌘dt = w(x, y)

Notice that the dominating function w(x, y) is finite as �+(Pi) < �(�).
We will now show that w(x, y) 2 L1(Ci). With the same notations hi = d(x,H⇠

i

) and
Si(h) =  ⇠

i

,h(Si) as before, we have for all i:

Z

C
i

w(x, y)dy =

Z 1

h

i

Z

y2S
i

(h)

2

4
Z 1

b

⇠

i

(x,y)

e��(�)t

A

P

i

⇣
x,

b

⇠

i

(x,y)+t

2

⌘dt

3

5 dydh =

Z 1

h

i

Z 1

h

e��(�)t
A

P

i

(h)

A

P

i

�
x, h+t

2

� dtdh

=

Z 1

h

i

e��(�)t

"Z
t

h

i

A

P

i

(h)

A

P

i

�
x, h+t

2

�dh
#
dt

C

�

Z 1

h

i

e��(�)t
F

P

i

(t)dt (17)

which converges, as � is not sparse and so !+(FP
i

)  �+(Pi) < �(�), by Corollary 2.8.
We therefore obtain from (16), by dominated convergence, using Roblin’s asymptotics

lim
R!+1

vX(x,R)

e�(�)R
=

kµx k

�(�) kµBM k

Z

D
kµy k dy =: m(x) < +1.

Notice that m(x) defines an L1-function on X̄ = �\X, as its integral over D is finite.2

Proof of Theorem 1.3(i). We assume now that X has an exotic lattice �, with
the dominant parabolic subgroups Pi, for i = 1, ..., d, satisfying � := �(�) = �+(Pi) 
2(��(Pi)� ✏), for some ✏ > 0. By Theorem 1.2 in [14], it holds !(X) = �(�) = �.

When µBM (UX̄) < 1, the same lines of the above proof apply: v
�

(x,R) ⇣
c
�

(x)e�R is purely exponential, and for the same functions w(x, y,R), w(x, y) we again
obtain (17); but we need some more work to deduce that, for the dominant cusps
Pi, the integral of e��tFP

i

(t) converges. So, for every dominant subgroup Pi, we write
vP

i

(x, t) = oi(t)e�t, for some subexponential functions oi(t); so, AP
i

(x, t) ⇣ e�2�t/oi(2t)
for t � R

0

. As � is exotic, the dominant parabolic subgroups Pi are convergent:
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actually, for any divergent subgroup �
0

< � with limit set L(�
0

) ( L(�) one has
�(�

0

) < �(�) (see [13]). Therefore, the Poincaré series of Pi gives, for � > �
0

� 0

1 >
X

p2P
i

e��d(x,px) �
X

k�1

v�P
i

(x, k�)

e�k
⇣

Z 1

�

oi(t)dt

by Proposition 2.5, so the functions oi(t) are integrable. This shows that

w(x, y) =

Z 1

b
⇠

i

(x,y)

e��t

AP
i

⇣
x,

b
⇠

i

(x,y)+t

2

⌘dt = e�b⇠i (x,y)
Z 1

b
⇠

i

(x,y)
oi(h+ t)dt <1

Moreover, as every dominant Pi is strictly 1

2

-pinched, we have vP
i

(x, t) � e
1
2 (�+✏)t for

some ✏ > 0, that is AP
i

(x, t) � e�(�+✏)t for all t > 0. Then Proposition 2.6 yields

FP
i

(R) ⇣

Z R

0

AP
i

(s)

AP
i

( s+R
2

)
ds � e�R

Z R

0

e�✏soi(s+R)ds for R� 0 (18)

hence (17) gives in this case:

Z

C
i

w(x, y)dy
C

�

Z 1

h

i

e��(�)t
F

P

i

(t)dt ⇣

Z 1

h

i

Z
t

0
e�✏so

i

(s+ t)ds

�
dt 

Z 1

0
e�✏s

Z 1

s

o
i

(s+ t)dt

�
ds

which converges, since oi is integrable. We can therefore pass to the limit for R !1
under the integral in (16), obtaining the asymptotics for vX(x,R) as before.

On the other hand, if µBM (UX̄) =1, then v
�

(x,R) = o
�

(R)e�R is lower-exponential,

and by (18) we have FP
i

(x,R) = fi(R)e�R with fi(R) =
R R
0

e�✏soi(s + R)ds for the
dominant cusps, and fi(R) � e�✏R, with ✏ > 0, for the others; in both cases, fi 2 L1,
since the functions oi(t) are subexponential. Proposition 3.2 then gives, for any arbi-
trarily small "0 > 0

v
X

(x,R)

e�R
�

1

e�R

Z
R

0
v�(x, t)

X

i

F

P

i

(R� t)dt �

Z
R

0
o�(t)

X

i

f
i

(R� t)dt



X

i

kf
i

k1 · sup
t>

R

2

o�(t) + ko� k1 ·

X

i

Z
R

R/2
f
i

(t)dt  "0·

 
X

i

kf
i

k1 +ko� k1

!

provided that R� 0, since o
�

(t) is infinitesimal and the fi are integrable. This shows
that vX(x,R) is lower-exponential too.2

Remark 4.1 We have seen that, if µBM (UX̄) = 1, then v
�

(x,R) = o
�

(R)e�R and
vX(x,R) = oX(R)e�R, where o

�

, oX are infinitesimal, and that FP
i

(x,R)=fi(R)e�R

with fi 2 L1; so,

ko
�

k1�koX k1

Z 1

0

vX(x,R)

e�R
dR �

Z 1

0

Z R

0

o
�

(t)
X

i

fi(R�t)dtdR ko� k1 ·

X

i

kfi k1

and we can say that o
�

is L1 if and only if oX is.

18



Finally, in order to prove Theorem 1.1, we need to recall a characterization of
constant curvature spaces as those pinched, negatively curved spaces whose lattices
realize the least possible value for the entropy. The minimal entropy problem has a
long history and has been declined in many di↵erent ways so far; see [23], [4], [10] for
the analogue of the following statement in the compact case, and [17] for a proof in
the finite-volume case:

Theorem 4.2 Let � be a lattice in a Hadamard manifold X with pinched curvature
�b2  KX  �a

2 < 0. Then �(�) � (n � 1)a, and �(�) = (n � 1)a if and only if X
has constant curvature �a2.

Proof of Theorem 1.1. Assume that � is a nonuniform lattice in a 1

4

-pinched
negatively curved manifold X, i.e. �b2  KX  �a

2 with b2  4a2. If X = Hn
a , then

clearly vX(x,R) ⇣ v
�

(x,R) is purely exponential, X has a Margulis function, and � is
divergent. Otherwise, let Pi be the maximal parabolic subgroups of �, up to conjugacy.
By the formulas (4), we know that for all x 2 X e�(n�1)bR

� AP
i

(x,R) � e�(n�1)aR,
so by Proposition 2.5 we have

a(n� 1)

2
 ��(Pi)  �

+(Pi) 
b(n� 1)

2

for all Pi. Thus, � is parabolically 1

2

-pinched. It follows from Corollary 3.3 that
!+(X) = !�(X) = �(�). Moreover, for all Pi we have

�+(Pi) 
b(n� 1)

2
 a(n� 1) < !(X) = �(�)

where the strict inequality follows by the rigidity Theorem 4.2, since X 6= Hn
a .

The same argument applies when X̄ is only asymptotically 1

4

-pinched, by replacing
�a2,�b2 with the bounds �k2

+

� ✏  KX  �k
2

� + ✏ on the cusps C̄i. Then, � is
also non-exotic, and we can conclude by Theorem 1.2 that � is divergent, with finite
Bowen-Margulis measure, vX ⇣ v

�

and X has a L1 Margulis function m(x).2

5 Examples

In this section we show that all the cases presented in Theorem 1.3 do occur, by
providing examples of spaces X with exotic or sparse lattices � which do not admit a
Margulis function, and with functions v

�

, vX having di↵erent behaviour.

If C̄ = P\H⇠(o) is a cusp of X̄=�\X, we write the metric of X in horospherical coor-
dinates on H⇠(o)⇠=@H⇠(o)⇥R+ as g = T (x, t)2dx2+ dt2, for x2@H⇠(o) and t=b⇠(o, ·).
We call the function T (x, t) the analytic profile of the cusp C̄. The horospherical area
AP (x, t) is then obtained by integrating Tn�1(x, t) over a compact fundamental domain
S for the action of P on @H⇠(o); thus, we have

AP (x, t)
c
⇣ Tn�1(x, t) for all x 2 C̄

(for a constant c depending on X and o). Also, notice that, in the particular case
where T (y, t) = T (t), for points x, y belonging to a same horosphere H⇠ we have by
the Approximation Lemma 2.2
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d(x, y) ⇠ 2T�1

✓
T (0)

d⇠(x, y)

◆
for R = d(x, y)!1. (19)

We will repeatedly make use of the following lemma, which is a easy modification
of one proved in [14]:

Lemma 5.1 Let b > a > 0, � > ↵ > 0 and ✏ > 0 be given.
There exist D = D(a, b,↵,�, ✏) > 1 and D0 = D0(a, b,↵,�) > 0 such that if [p, q], [r, s]
are disjoint intervals satisfying r � Dq and p � D0, then there exist C2, convex and
decreasing functions �✏,  ✏ on [p, s] satisfying:
8
>>><

>>>:

8 t 2 [p, q], �✏(t) = t�e�bt

8 t 2 [r, s], �✏(t) = t↵e�at

8 t 2 [p, s], t�e�bt
 �✏(t)  t↵e�at

8 t 2 [p, s], a2 � ✏  �00
✏

(t)
�
✏

(t)  b2 + ✏

and

8
>>><

>>>:

8 t 2 [p, q],  ✏(t) = t↵e�at

8 t 2 [r, s],  ✏(t) = t�e�bt

8 t 2 [p, s], t�e�bt
  ✏(t)  t↵e�at

8 t 2 [p, s], a2 � ✏   00
✏

(t)
 
✏

(t)  b2 + ✏

Example 5.2 Sparse lattices.

Sparse lattices satisfying !+(X) > �(�) were constructed by the authors in [14]. Here,
we modify that construction to show that, for spaces X admitting sparse lattices, one
can have !+(X) > !�(X) > �(�) (in contrast, notice that �(�) always is a true limit);
this shows in particular that sparse lattices generally do not have a Margulis function.
We start from a hyperbolic surface X̄

0

= X
0

\� of finite volume, homeomorphic to
a 3-punctured sphere, and, for any arbitrary small ✏ > 0, we perturb the hyperbolic
metric g

0

on one cusp C̄ = P\H⇠(x) into a metric g✏ by choosing an analytic profile T✏
obscillating, on infinitely many horospherical bands, from e�t to e�bt.

Namely, choose a = 1, b > 2 and ✏ > 0 arbitrarily small, and let D,D0 be the constants
given by Lemma 5.1. For M � 1, we define a sequence of disjoint subintervals of
[M4n,M4n+1]:

[p
n

, q
n

] := [M4n, 2M4n], [r
n

, s
n

] :=


p
n

+M4n+1

2
,
q
n

+M4n+1

2

�

such that rn � Dqn, pn+1

� Dsn, p1 � D0 (we can choose any M � max{4D�1, 3
p

D}

in order that these conditions are satisfied). Notice that t+M4n+1

2

2 [rn, sn] for all
t 2 [pn, qn]. Then, by Lemma 5.1, we consider a C2, decreasing function T✏(t) satisfying:

(i) T✏(t) = e�t for t 2 [M4n�2,M4n] [ [pn, qn], and T✏(t) = e�bt for t 2 [rn, sn];

(ii) e�bt
 T✏(t)  e�t and �b2 � ✏  T 00

✏ (t)/T✏(t)  �1 + ✏.

Thus, the new analytic profile T✏(t) of C̄ coincides with the profile of a usual hyperbolic
cusp on [M4n�2, 2M4n], and with the profile of a cusp in curvature �b2 on the bands
[rn, sn] ⇢ [M4n,M4n+1]. We have, with respect to the metric g✏:

(a) �+(P ) = b
2

and ��(P ) = 1

2

, by (i) and (ii), because of Proposition 2.5;

(b) !+(FP ) �
b
2

+ � for � = 1

M ( b
2

� 1) > 0, because for R = M4n+1
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FP (x,R) �

Z R

0

A✏(x, t)

A✏(x,
t+R
2

)
dt �

Z q
n

p
n

e�t

e�b( t+R

2 )

dt � e
b

2R
·M4ne(

b

2�1)p
n

� e
b

2R
·e

1
M

(

b

2�1)R

(20)
as pn/R = 1

M ;

(c) !�(FP ) 
1

2

if M > 2, as for R 2 [M4n+3,M4n+4] we obtain:

FP (x,R) �

Z R

0

e�t

e�(

t+R

2 )

dt � e
R

2 (21)

since M4n+4

�

t+R
2

�

M4n+3

2

�M4n+2;

(d) �(�) is arbitrarily close to �+(P ), let’s say �(�)  b
2

+ �
2

, if we perturb the hyperbolic
metric su�ciently far in the cusp C̄, i.e. if r

1

� 0 (this is Proposition 5.1 in [14]).

It follows that !�(X) > �(�). Actually, assume that v
�

(x,R) � e(�(�)�⌘)R, for ar-
bitrarily small ⌘. By Proposition 3.2 and (20), we deduce that for any R � 0, if
M4n+1

 R < M4n+5

vX(x,R+ 2D
0

) � v
�

(x, ·) ⇤ FP (x, ·) (x,R) � e(�(�)�⌘)(R�M4n+1
)

· e(
b

2+�)M
4n+1

by taking just the term v
�

(x,R�t)FP (x, t)) of the convolution with t closest to M4n+1,

where FP (t) � e(
b

2+�)t; as M4n+1

� R/M4 we get vX(x,R + 2�) � e(�(�)�⌘+
�/2+⌘

M

4 )R

which gives !�(X) � �(�) + �
2M4 , ⌘ being arbitrary.

Finally, we show that !+(X) > !�(X). In fact, the cusps di↵erent from C̄ being
hyperbolic, we have, always by Proposition 3.2, that !+(X) = !+(FP ) �

b
2

+ �.

On the other hand, we know that !+(FP )  max{�+(P ), 2(�+(P ) � ��(P )} = b � 1,
by Corollary 2.8; thus, assuming FP (x, t) � e(b�1+⌘)t, for arbitrarily small ⌘, equation
(21) yields for R = M

4n+4

vX(x,R� 2D
0

) 

Z M4n+3

0

v
�

(x,R� t) · FP (x, t)dt+

Z R

M4n+3
v
�

(x,R� t) · FP (x, t)dt

�

Z M4n+3

0

e�(�)(R�t)
· e(b�1+⌘)tdt+

Z R

M4n+3
e�(�)(R�t)

· e
1
2 tdt

� e�(�)R · e(b�1+⌘��(�))M4n+3
 e(

b

2+
�

2+
(b/2+⌘�1

M

)R

being b
2

 �(�)  b
2

+ �
2

and M4n+3 = R
M . Hence !�(X) < b

2

+ �  !+(X), if M � 0
and ⌘ small enough.

Examples 5.3 Exotic, strictly 1

2

-parabolically pinched lattices.

We say that a lattice � is strictly 1

2

-parabolically pinched when every parabolic sugroup
P < � satisfies the strict inequality �+(P ) < 2��(P ). Let X̄ = �\X as before; we show
here that, for � exotic and strictly 1

2

-parabolically pinched, the following cases which
appear in Theorem 1.3 do occur:
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(a) µBM (UX̄) =1 and vX is lower-exponential;

(b) µBM (UX̄) <1 and vX is purely exponential.

We start by an example of lattice satisfying (a).
In [16] the authors show how to construct convergent lattices, in pinched negative
curvature and any dimension n; we will take n = 2 here by the sake of simplicity.
In those examples, the metric is hyperbolic everywhere but one cusp C, which has
analytic profile T (t) = t�ebt for t � t

0

� 0, with � > 1 and b > 2. Therefore, there
is just one dominant maximal parabolic subgroup P , with AP (x, t) ⇣ T (t) ⇣ ebt, and
�+(P ) = ��(P ) = b

2

; moreover, the subgroup P is convergent as

X

p2P

e�
b

2d(x,px)


X

k�0

v
P

(x, k)e�
b

2k
⇣

Z 1

1

e�
b

2 t

A

P

(x, t

2 )
dt ⇣

Z 1

1

e�
b

2 t

(t)� · e�b

t

2

dt ⇣

Z 1

1
t��dt <1.

By decomposing the elements of � in geodesic segments which, alternatively, either go
very deep in the cusp or stay in the hyperbolic part of X, we show in [16] that � is con-
vergent too, provided that t

0

� 0. Then, � is exotic with infinite Bowen-Margulis mea-
sure, and v

�

(x,R) is lower-exponential by Roblin’s asymptotics. By Theorem 1.3(i),
the function vX is lower-exponential as well, with the same exponential growth rate.

We now give an example for (b).
This is more subtle, as we need to take a divergent, exotic lattice �: the existence of
such lattices is established, in dimension 2, in [16]. Again, the simplest example is
homeomorphic to a three-punctured sphere, with three cusps, and hyperbolic metric
outside one cusp C̄, which has analytic profile

T (t) =

8
<

:

e�t for t  A
e�bt for t 2 [A,A+B] +D
t3 · e�bt for t� D +A+B

with b > 2 and A,B,D � 0. As before, we have one dominant and convergent maximal
parabolic subgroup P , with �+(P ) = ��(P ) = b

2

. In [16] it is proved that, according to
the values of A and B, the behaviour of the group � is very di↵erent: it is convergent
with critical exponent �(�) = �+(P ), for A � 0 and B = 0, while it is divergent
with �(�) > �+(P ) if B � A. By perturbation theory of transfer operators, it is then
proved that there exists a value of B for which � is divergent with �(�) = �+(P )
precisely. Thus, for this particular value of B, the lattice � is exotic, and has finite
Bowen-Margulis measure by the Finiteness Criterion, as

X

p2P

d(x, px)e��(�)d(x,px)
�

Z 1

1

te�
b

2 t

A

P

(x, t

2 )
dt �

Z 1

1

te�
b

2 t

t3 · e�b

t

2

dt ⇣

Z 1

1
t�2dt <1 (22)

It follows that vX ⇣ v
�

is purely exponential, by Theorem 1.3(i).

Examples 5.4 Exotic, exactly 1

2

-parabolically pinched lattices.

We say that a lattice � is exactly 1

2

-parabolically pinched when it is 1

2

-parabolically
pinched and has a parabolic sugroup P < � satisfisfying the quality �+(P ) = 2��(P ).
We show here that for an exotic and exactly 1

2

-parabolically pinched lattice �, the
following cases can occur:
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(a) µBM (UX̄) <1, with v
�

purely exponential and vX weakly upper-exponential;

(b) µBM (UX̄) =1, with v
�

lower-exponential and vX weakly upper-exponential.

We start by (a). Consider a surface with three cusps as in the Examples 5.3, now
perturbing the hyperbolic metric on the cusp C̄ to an analytic profile defined as follows.
First, choose a sequence of disjoint subintervals of [M2n,M2n+1]

[pn, qn] := [M2n, µM2n+1], [rn, sn] :=


pn +M2n+1/2

2
,
qn +M2n+1

2

�
(23)

and then define, for b > 1 and 0 < � < 1

T (t) =

8
>><

>>:

e�t for t  A
e�bt for t 2 [A,A+B] +D

t · e�
b

2 t for t 2 [pn, qn]
t2+� · e�bt for t 2 [rn, sn]

with t2+�e�bt
 T (t)  t · e�

b

2 t for all t � t
0

� 0 (in order that the conditions of
Lemma 5.1 are satisfied, it is enough to choose any 0 < µ < 1

4D and M > D).

As before, the profile T gives a divergent, exotic lattice � for a suitable value of B
and A � 0, with dominant parabolic subgroup P having �+(P ) = b

2

= �(�), and

��(P ) = b
4

. The Bowen-Margulis measure of � is finite, as (22) also holds in this case;
thus, v

�

is purely exponential. Let us now show that vX is upper exponential: for every
R = M2n+1 we have, by Proposition 3.2,

vX(x,R+ 2D
0

) � [vX(x, ·) ⇤ FP (x, ·)] (R) ⇣

Z R

0

v
�

(x,R� t)

Z t

0

AP (x, s)

AP (x,
s+t
2

)
ds

�
dt

=

Z R

0

AP (x, s)

Z R

s

v
�

(x,R� t)

AP (x,
s+t
2

)
dt

�
ds �

Z q
n

p
n

AP (x, s)

"Z R

R

2

v
�

(x,R� t)

AP (x,
s+t
2

)
dt

#
ds

since qn < R
2

. As s+t
2

2 [rn, sn] if s 2 [pn, qn] and t 2 [R
2

, R], by the definition of
T (t) ⇣ AP (x, t) on [rn, sn], this yields

v
X

(x,R) �

Z
q

n

p

n

se�
b

2 s

"Z
R

R

2

e
b

2 (R�t)

e�b( s+t

2 )(s+ t)2+�

dt

#
ds � e

b

2R

Z
q

n

p

n

Rs

(s+R)2+�

ds

with

Z q
n

p
n

Rs

(s+R)2+�
ds �

Z µ

1
M

u

(1 + u)2+�
du ⇣ R1�� , so vX is upper-exponential.

Producing examples for case (b) is more di�cult; for this, we will need an exotic
lattice � whose orbital function satisfies v

�

(o,R) ⇣ 1

R�

e�(�)R. Lattices with lower-
exponential growth and infinite Bowen-Margulis measure are investigated in [16], where
a refined counting result is proved, according to the behaviour of the profile functions
of the cusps (the examples in [16] are, as far as we know, the only precise estimates of
the orbital function for groups with infinite Bowen-Margulis measure). Here we only
give the necessary analytic profiles of the cusps in order to have a function vX which
is exponential or upper-exponential, referring to [16] for the precise estimate of v

�

.
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We again start from a hyperbolic surface X̄
0

= X
0

\� with three cusps as in 5.3, and
perturb now the metric on two cusps. We choose b > 2 and 1 + � < � < 2 + �, and
define the profiles for C̄

1

and C̄

2

as

T
1

(t) =

8
>><

>>:

e�t for t  A
e�bt for t 2 [A,A+B] +D

t · e�
b

2 t for t 2 [pn, qn]
t� · e�bt for t 2 [rn, sn]

and T
2

(t) =

⇢
e�t for t  A
t1+�e�bt for t� A

for the same sequence of intervals [pn, qn], [rn, sn] as in (23).

If P
1

, P
2

are the associated maximal parabolic subgroups, we have ��(P
1

) = b
4

and

�+(P
1

) = b
2

, while �+(P
2

) = ��(P
2

) = b
2

by construction. It is easily verified that these
parabolic subgroups are convergent as � > 0. Again, pushing the perturbation far in
the cusps (i.e. choosing A � 0) and for a suitable value of B, the lattice � becomes
exotic and divergent; it has two dominant cusps, it is exactly 1

2

-parabolically pinched,
and has infinite Bowen-Margulis measure, because (as � < 1)

X

p2P2

d(x, px)e��(�)d(x,px) �

Z 1

1

te�
b

2 t

t1+� · e�b t

2

dt ⇣

Z 1

1

t��dt =1.

Accordingly, v
�

is lower-exponential. In [16] it is proved that the least convergent
dominant parabolic subgroup determines the asymptotics of v

�

; in this case, the
parabolic subgroup P

1

converges faster than P
2

, and the chosen profile for C̄

2

then
gives v

�

(o,R) ⇣ 1

R1��

e�(�)R, provided that � 2 (1
2

, 1), cp. [16].

Let us now estimate vX(x,R), for R = M2n+1. Writing T
1

(t) = ⌧+(t)e�bt = ⌧�(t)e�
b

2 t

so that ⌧+(t) = t� on [rn, sn] and ⌧�(t) = t on [pn, qn], we compute as in case (a):

v
X

(x,R+ 2D0) � (v�(x, ·) ⇤ FP1(x, ·)) (R) =

Z
R

0

Z
t

0

A

P1(x, s)

A

P1(x,
t+s

2 )
v�(x,R� t)dtds

⇣

Z
R

0

Z
t

0

⌧�(s) · e�
b

2 s
· e

b

2 (R�t)

⌧+( t+s

2 ) · (R� t)1��

· e�b( t+s

2 )
dtds = e

b

2R

Z
R

0
⌧�(s)

"Z
R

s

dt

⌧+( t+s

2 )(R� t)1��

#
ds

� e
b

2R

Z
q

n

=µR

p

n

= R

M

s

"Z
R

R

2

dt

R�(R� t)1��

#
ds �

✓
µ�

1

M

◆
R2+���e

b

2R

which is upper-exponential as � < 2 + �.

Remark 5.5 Notice that in all these examples b can be chosen arbitrarily close to
2a = 2. Thus, by the last condition in Lemma 5.1, the analytic profiles give metrics
with curvature �4a2 � ✏  KX  �a

2, for arbitrarily small ✏ > 0.
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géométriquement finis, Israel Journal of Math.118, 109–124.
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[15] Dal’bo F., Peigné M., Picaud J.C., Sambusetti A., (2010) On the growth of quo-
tients of Kleinian groups, Ergodic Theory and Dynamical Systems 31 no.3, 835–851.
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