178 research outputs found

    The connection between radio and high energy emission in black hole powered systems in the SKA era

    Get PDF
    Strong evidence exists for a highly significant correlation between the radio flux density and gamma-ray energy flux in blazars revealed by Fermi. However, there are central issues that need to be clarified in this field: what are the counterparts of the about 30% of gamma-ray sources that are as yet unidentified? Are they just blazars in disguise or they are something more exotic, possibly associated with dark matter? How would they fit in the radio-gamma ray connection studied so far? With their superb sensitivity, SKA1-MID and SKA1-SUR will help to resolve all of these questions. Even more, while the radio-MeV/GeV connection has been firmly established, a radio-VHE connection has been entirely elusive so far. The advent of CTA in the next few years and the expected CTA-SKA1 synergy will offer the chance to explore this connection, even more intriguing as it involves the opposite ends of the electromagnetic spectrum and the acceleration of particles up to the highest energies. We are already preparing to address these questions by exploiting data from the various SKA pathfinders and precursors. We have obtained 18 cm European VLBI Network observations of E>10 GeV sources, with a detection rate of 83%. Moreover, we are cross correlating the Fermi catalogs with the MWA commissioning survey: when faint gamma-ray sources are considered, pure positional coincidence is not significant enough for selecting counterparts and we need an additional physical criterion to pinpoint the right object. It can be radio spectral index, variability, polarization, or compactness, needing high angular resolution in SKA1-MID; timing studies can also reveal pulsars, which are often found from dedicated searches of unidentified gamma-ray sources. SKA will be the ideal instrument for investigating these characteristics in conjunction with CTA. (abridged)Comment: 12 pages, to be published in the proceedings of "Advancing Astrophysics with the Square Kilometre Array", PoS(AASKA14)15

    Low-frequency radio emission in the massive galaxy cluster MACS J0717.5 + 3745

    Get PDF
    International audienceTo investigate the nonthermal emission mechanism and their interaction during cluster mergers, we analyze multiple low-frequency radio data for the X-ray luminous massive galaxy cluster MACS J0717.5 + 3745, located at z = 0.5548. Large-scale structure-formation models in the Universe suggest that galaxy clusters grow via constant accretion of gas and the merger of galaxy groups and smaller clusters. Low-frequency radio observations trace these mergers in the form of relics and halos. The dual frequency observations were performed on MACS J0717.5 + 3745 to investigate the spectral index pattern of the nonthermal emission and its interaction within the intracluster medium (ICM), during merger process. Methods: Continuum observations were carried out using GMRT at 0.235 and 0.61 GHz on MACS J0717.5 + 3745 and archival data from the VLA (0.074 and 1.42 GHz) and WSRT (0.325 GHz) was used to complement the results. Furthermore, to explore the thermal and nonthermal interactions within the ICM and the morphological distribution, Chandra X-ray and HST data were used. Results: A highly complex nonthermal radio emission distribution is seen in the cluster at very low frequencies, with a global spectral index α0.2350.61˜-1.17±0.37. We have detected a giant radio halo within the cluster system with a linear size of 1.58 Mpc and a "Chair-shaped" filament structure between the merging subclusters of linear size 853 kpc at 0.235 GHz. This is the most powerful halo ever observed with P1.4 = 9.88 × 1025 WHz-1 and an equipartition magnetic field estimate of ~6.49 μG. The bright filament structure is well located in the central merging region of subclusters with enhanced temperature, as shown by Chandra and HST data analysis, further indicating the formation of this structure due to shock waves encountered within the ICM during the merger events

    `Zwicky's Nonet': a compact merging ensemble of nine galaxies and 4C 35.06, a peculiar radio galaxy with dancing radio jets

    Get PDF
    We report the results of our radio, optical and infra-red studies of a peculiar radio source 4C~35.06, an extended radio-loud AGN at the center of galaxy cluster Abell 407 (z=0.047z=0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of \sim1~arcmin size. This system (named the `Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C~35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400~kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few×(107108)\,\times (10^7 - 10^8) yr. Such ultra-steep spectrum relic radio lobes without definitive hot-spots are rare, and they provide an opportunity to understand the life-cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of the growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.Comment: Published in MNRAS | No. of pages 12, 10 figures and 4 tables. Comments are welcom

    Discovery of giant radio galaxies from NVSS: radio and infrared properties

    Get PDF
    Giant radio galaxies (GRGs) are one of the largest astrophysical sources in the Universe with an overall projected linear size of ∼0.7 Mpc or more. The last six decades of radio astronomy research has led to the detection of thousands of radio galaxies. However, only ∼300 of them can be classified as GRGs. The reasons behind their large size and rarity are unknown. We carried out a systematic search for these radio giants and found a large sample of GRGs. In this paper, we report the discovery of 25 GRGs from the National Radio Astronomy Observatory Very Large Array Sky Survey, in the red-shift range z ∼ 0.07 to 0.67. Their physical sizes range from ∼0.8 Mpc to ∼4 Mpc. Eight of these GRGs have sizes ≥2 Mpc, which is a rarity. Here, for the first time, we investigate the mid-infrared (IR) properties of the optical hosts of the GRGs and classify them securely into various active galactic nuclei types using the WISE mid-IR colours. Using radio and IR data, four of the hosts of the GRGs were observed to be radio-loud quasars that extend up to 2 Mpc in radio size. These GRGs missed detection in earlier searches possibly because of their highly diffuse nature, low surface brightness and lack of optical data. The new GRGs are a significant addition to the existing sample. They will contribute to a better understanding of the physical properties of radio giants.Large scale structure and cosmolog

    GMRT observations of the Ophiuchus galaxy cluster

    Full text link
    VLA observations at 1477 MHz revealed the presence of a radio mini-halo surrounding the faint central point-like radio source in the Ophiuchus cluster of galaxies. In this work we present a study of the radio emission from this cluster of galaxies at lower radio frequencies. We observed the Ophiuchus cluster at 153, 240, and 614 MHz with the GMRT. The mini-halo is clearly detected at 153 and 240 MHz while it is not detected at 610 MHz. The most prominent feature at low frequencies is a patch of diffuse steep spectrum emission located at about 5' south-east from the cluster center. By combining these images with that at 1477 MHz, we derived the spectral index of the mini-halo. Globally, the mini-halo has a low-frequency spectral index of alpha_240^153 ~1.4 +/- 0.3 and an high-frequency spectral index of alpha_1477^240 ~ 1.60 +/- 0.05. Moreover, we measure a systematic increase of the high-frequency spectral index with radius: the azimuthal radial average of alpha_1477^240 increases from about 1.3, at the cluster center, up to about 2.0 in the mini-halo outskirts. The observed radio spectral index is in agreement with that obtained by modeling the non-thermal hard X-ray emission in this cluster of galaxies. We assume that the X-ray component arises from inverse Compton scattering between the photons of the cosmic microwave background and a population of non-thermal electrons which are isotropically distributed and whose energy spectrum is a power law with index p. We derive that the electrons energy spectrum should extend from a minimum Lorentz factor of gamma_min < 700 up to a maximum Lorentz factor of gamma_max =3.8 x 10^4 with an index p=3.8 +/- 0.4. The volume-averaged strength for a completely disordered intra-cluster magnetic field is B_V ~0.3 +/- 0.1 micro-G.Comment: 14 pages, 8 figures, accepted for publication in Astronomy and Astrophysics. For a version with high-quality figures see http://erg.ca.astro.it/preprints/ophi_2010

    LOFAR MSSS: Flattening low-frequency radio continuum spectra of nearby galaxies

    Get PDF
    Accepted for publication in Astronomy and AstrophysicsAims. The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Methods. Using the measured 150 MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies characterised by different morphology and star formation rate. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Results. Our galaxies' spectra are generally flatter at lower compared to higher frequencies: the median spectral index α low measured between ≈ 50 MHz and 1.5 GHz is -0.57 ± 0.01 while the high-frequency one α high, calculated between 1.3 GHz and 5 GHz, is -0.77 ± 0.03. As there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990, ApJ, 352, 30). According to our modelled radio maps for M 51-like galaxies, the free-free absorption effects can be seen only below 30 MHz and in the global spectra just below 20 MHz, while in the spectra of starburst galaxies, like M 82, the flattening due to absorption is instead visible up to higher frequencies of about 150 MHz. Starbursts are however scarce in the local Universe, in accordance with the weak spectral curvature seen in the galaxies of our sample. Locally, within galactic disks, the absorption effects are distinctly visible in M 51-like galaxies as spectral flattening around 100-200 MHz in the face-on objects, and as turnovers in the edge-on ones, while in M 82-like galaxies there are strong turnovers at frequencies above 700 MHz, regardless of viewing angle. Conclusions. Our modelling of galaxy spectra suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects. We predict much stronger effects of thermal absorption in more distant galaxies with high star formation rates. Some influence exerted by the Milky Way's foreground on the spectra of all external galaxies is also expected at very low frequencies.Peer reviewedFinal Accepted Versio

    LOFAR MSSS: The Scaling Relation between AGN Cavity Power and Radio Luminosity at Low Radio Frequencies

    Get PDF
    This article has been accepted for publication in a forthcoming issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We study the correlation at low radio frequencies using two new surveys - the First Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's first all-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation PcavL148βP_{\rm cav} \propto L_{148}^{\beta}, with a logarithmic slope of β=0.51±0.14\beta = 0.51 \pm 0.14, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. We show that including measurements at 148 MHz alone is insufficient to reliably compute the bolometric radio luminosity and reduce the scatter in the correlation. For a subset of four well-resolved sources, we examine the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X-ray observations.Peer reviewe

    Cluster Radio Halos at the crossroads between astrophysics and cosmology in the SKA era

    Get PDF
    Giant Radio Halos (RH) are diffuse, Mpc-sized, synchrotron radio sources observed in a fraction of merging galaxy clusters. The current scenario for the origin of RHs assumes that turbulence generated during cluster mergers re-accelerates pre-existing fossil and/or secondary electrons in the intra-cluster-medium (ICM) to the energies necessary to produce the observed radio emission. Moreover, more relaxed clusters could host diffuse "off state" halos produced by secondary electrons. In this Chapter we use Monte Carlo simulations, that combine turbulent-acceleration physics and the generation of secondaries in the ICM, to calculate the occurrence of RHs in the Universe, their spectral properties and connection with properties of the hosting clusters. Predictions for SKA1 surveys are presented at low (100-300 MHz) and mid (1-2 GHz) frequencies assuming the expected sensitivities and spatial resolutions of SKA1. SKA1 will step into an unexplored territory allowing us to study the formation and evolution of RHs in a totally new range of cluster masses and redshift, allowing firm tests of the current theoretical hypothesis. In particular, the combination of SKA1-LOW and SUR will allow the discovery of ~1000 ultrasteep- spectrum halos and to detect for the very first time "off state" RHs. We expect that at least ~2500 giant RHs will be discovered by SKA1-LOW surveys up to z~0.6. Remarkably these surveys will be sensitive to RHs in a cluster mass range (down to ~10^14 solar masses) and redshifts (up to ~1) that are unexplored by current observations. SKA1 surveys will be highly competitive with present and future SZ-surveys in the detection of high-redshift massive objects.Comment: 13 pages, 6 figures, to appear in proceedings of "Advancing Astrophysics with the Square Kilometre Array" PoS(AASKA14)07

    Lofar low-band antenna observations of the 3C 295 and boötes fields : Source counts and ultra-steep spectrum sources

    Get PDF
    © 2018 The American Astronomical Society. All rights reserved.We present Low Frequency Array (LOFAR) Low Band observations of the Boötes and 3C 295 fields. Our images made at 34, 46, and 62 MHz reach noise levels of 12, 8, and 5 mJy beam-1, making them the deepest images ever obtained in this frequency range. In total, we detect between 300 and 400 sources in each of these images, covering an area of 17-52 deg2. From the observations, we derive Euclidean-normalized differential source counts. The 62 MHz source counts agree with previous GMRT 153 MHz and Very Large Array 74 MHz differential source counts, scaling with a spectral index of -0.7. We find that a spectral index scaling of -0.5 is required to match up the LOFAR 34 MHz source counts. This result is also in agreement with source counts from the 38 MHz 8C survey, indicating that the average spectral index of radio sources flattens toward lower frequencies. We also find evidence for spectral flattening using the individual flux measurements of sources between 34 and 1400 MHz and by calculating the spectral index averaged over the source population. To select ultra-steep spectrum (α < -1.1) radio sources that could be associated with massive high-redshift radio galaxies, we compute spectral indices between 62 MHz, 153 MHz, and 1.4 GHz for sources in the Boötes field. We cross-correlate these radio sources with optical and infrared catalogs and fit the spectral energy distribution to obtain photometric redshifts. We find that most of these ultra-steep spectrum sources are located in the 0.7 ≲ z ≲ 2.5 range.Peer reviewe
    corecore