552 research outputs found

    Modelling the Antarctic lower stratosphere

    Get PDF
    Results form modeling studies of the Antarctic lower stratosphere which have attempted to simulate the large springtime ozone losses and corresponding changes in other trace constituents are given. These studies were carried out in a photochemical box model, a one-dimensional model without transport and in a two-dimensional photochemical-dynamical-radiation model. The photochemical studies have investigated inter alia the sensitivity of ozone to inclusion in the model of heterogeneous chemistry, and to the inclusion of the ClO dimer. When both of these are incorporated in the model, ozone depletions resembling whose found in Halley Bay in 1987 (J.C. Farman, Nature, 329, 1987) can be reproduced. The temporal variations (both diurnal and during the August to October period) of a number of important tracers including HCl, ClONO2, OClO and BrO are discussed. The two-dimensional study concentrated on the difficulty of establishing in the model the dynamical preconditioning of the lower polar stratosphere - low temperatures, low N2O, etc., high ClOx. Calculations are presented to show: (1) the depletion of ozone during the springtime season, (2) the effect of large ozone losses on lower latitudes, and (3) the longer term (multi-year) variations of ozone in Antarctica, assuming realistic increases in the atmospheric halogen burden

    Mid-latitude ozone changes: studies with a 3-D CTM forced by ERA-40 analyses

    Get PDF
    International audienceWe have used an off-line three-dimensional (3-D) chemical transport model (CTM) to study long-term changes in stratospheric O3. The model was run from 1977?2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH) column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase to the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes to the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading

    Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    Get PDF
    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr<sub>3</sub>) and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach

    Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets

    Get PDF
    Monitoring the atmospheric concentrations of greenhouse gases (GHGs) is crucial to improve our understanding of their climate impact. However, there are no long-term profile data sets of important GHGs that can be used to gain a better insight into the processes controlling their variations in the atmosphere. In this study, we apply corrections to chemical transport model (CTM) output based on profile measurements from two solar occultation instruments: the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS). The goal is to construct long-term (1991–2021), gap-free stratospheric profile data sets, hereafter referred to as TCOM, for two important GHGs. To estimate the corrections that need to be applied to the CTM profiles, we use the extreme gradient boosting (XGBoost) regression model. For methane (TCOM-CH4), we utilize both HALOE and ACE satellite profile measurements from 1992 to 2018 to train the XGBoost model, while profiles from 2019 to 2021 serve as an independent evaluation data set. As there are no nitrous oxide (N2O) profile measurements for earlier years, we derive XGBoost-derived correction terms to construct TCOM-N2O profiles using only ACE-FTS profiles from the 2004–2018 time period, with profiles from 2019–2021 used for the independent evaluation. Overall, both TCOM-CH4 and TCOM-N2O profiles exhibit excellent agreement with the available satellite-measurement-based data sets. We find that compared to evaluation profiles, biases in TCOM-CH4 and TCOM-N2O are generally less than 10 % and 50 %, respectively, throughout the stratosphere. The daily zonal mean profile data sets, covering altitude (15–60 km) and pressure (300–0.1 hPa) levels, are publicly available via the following links: https://doi.org/10.5281/zenodo.7293740 for TCOM-CH4 (Dhomse, 2022a) and https://doi.org/10.5281/zenodo.7386001 for TCOM-N2O (Dhomse, 2022b).</p

    The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    No full text
    International audienceBromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at northern hemisphere mid-latitudes of only ?55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ?45% of the model estimated column ozone loss at northern hemisphere mid-latitudes. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called ?-factor, is about 73 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in ?. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean ?-factor

    The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    Get PDF
    Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only &amp;#x2248;55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for &amp;#x2248;45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor

    Factors controlling Arctic denitrification in cold winters of the 1990s

    No full text
    International audienceDenitrification of the Arctic winter stratosphere has been calculated using a 3-D microphysical model for the winters 1994/95, 1995/96, 1996/97 and 1999/2000. Denitrification is assumed to occur through the sedimentation of low number concentrations of large nitric acid trihydrate (NAT) particles, as observed extensively in 1999/2000. We examine whether the meteorological conditions that allowed NAT particles to grow to the very large sizes observed in 1999/2000 also occurred in the other cold winters. The results show that winter 1999/2000 had conditions that were optimum for denitrification by large NAT particles, which are a deep concentric cold pool and vortex. Under these conditions, NAT particles can circulate in the cold pool for several days, reaching several micrometres in radius and leading to a high downward flux of nitric acid. The other winters had shorter periods with optimum conditions for denitrification. However, we find that NAT particles could have grown to large sizes in all of these winters and could have caused significant denitrification. We define the quantity "closed flow area'' (the fraction of the cold pool in which air parcel trajectories can form closed loops) and show that it is a very useful indicator of possible denitrification. We find that even with a constant NAT nucleation rate throughout the cold pool, the average NAT number concentration and size can vary by up to a factor of 10 in response to this meteorological quantity. These changes in particle properties account for a high degree of variability in denitrification between the different winters. This large meteorologically induced variability in denitrification rate needs to be compared with that which could arise from a variable nucleation rate of NAT particles, which remains an uncertain quantity in models

    Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations

    Get PDF
    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of hydrogen fluoride (HF), the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier transform spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by  ∼  10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year−1 (1991–1997; HALOE), 1.12 ± 0.08 % year−1 (1998–2005; HALOE), and 0.52 ± 0.03 % year−1 (2004–2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year−1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude; for example, between 2004 and 2012 HF actually decreased in the Southern Hemisphere below  ∼  35 km. An additional SLIMCAT simulation with repeating meteorology for the year 2000 produces much cleaner trends in HF with minimal variations with latitude and altitude. Therefore, the variations with latitude and altitude in the observed HF trends are due to variability in stratospheric dynamics on the timescale of a few years. Overall, the agreement between observation and model points towards the ongoing success of the Montreal Protocol and the usefulness of HF as a metric for stratospheric fluorine

    Bromine in the tropical troposphere and stratosphere as derived from balloon-borne BrO observations

    Get PDF
    The first tropospheric and stratospheric (4 to 33 km) BrO profile is presented for the inner tropics derived from balloon-borne DOAS (Differential Optical Absorption Spectroscopy) measurements. In combination with photochemical modelling, total stratospheric inorganic bromine (Br&lt;sub&gt;y&lt;/sub&gt;) is deduced to be (21.5&amp;plusmn;2.5) ppt in 4.5-year-old air, probed in 2005. We derive a total contribution of (5.2&amp;plusmn;2.5) ppt from brominated very short-lived substances and inorganic product gases to stratospheric Br&lt;sub&gt;y&lt;/sub&gt; Tropospheric BrO was found to be &lt;1 ppt. Our results are compared to two 3-D CTM SLIMCAT model runs, which differ in the lifetime of the bromine source gases, affecting the vertical distribution of Br&lt;sub&gt;y&lt;/sub&gt; in the lower stratosphere. Bromine source gas measurements performed 10 days earlier Laube et al., 2008, indicate a lower Br&lt;sub&gt;y&lt;/sub&gt; of (17.5&amp;plusmn;0.4) ppt. Potential reasons for this discrepancy are discussed

    A refined method for calculating equivalent effective stratospheric chlorine

    Get PDF
    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the "release time distribution". We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that – under otherwise unchanged conditions – the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level
    • …
    corecore