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Abstract. The first tropospheric and stratospheric (4 to
33 km) BrO profile is presented for the inner tropics derived
from balloon-borne DOAS (Differential Optical Absorption
Spectroscopy) measurements. In combination with photo-
chemical modelling, total stratospheric inorganic bromine
(Bry) is deduced to be (21.5±2.5) ppt in 4.5-year-old
air, probed in 2005. We derive a total contribution of
(5.2±2.5) ppt from brominated very short-lived substances
and inorganic product gases to stratospheric Bry. Tropo-
spheric BrO was found to be<1 ppt. Our results are com-
pared to two 3-D CTM SLIMCAT model runs, which differ
in the lifetime of the bromine source gases, affecting the ver-
tical distribution of Bry in the lower stratosphere. Bromine
source gas measurements performed 10 days earlier (Laube
et al., 2008), indicate a lower Bry of (17.5±0.4) ppt. Poten-
tial reasons for this discrepancy are discussed.

1 Introduction

Stratospheric bromine has recently come into focus again,
primarily due to the presumed importance of brominated
very short-lived substances (VSLS), with a lifetime of less
than 0.5 years, for ozone chemistry (Law and Sturges, 2007).

Previous studies exhibit various limitations to assess
the different contributions to total stratospheric inorganic
bromine (Bry). The temporally close observations of the ma-
jor product gas (BrO) and source gases (Laube et al., 2008)
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at the same location attempt to overcome these limitations.
Most studies did not cover the relevant source gases (SGs)
and were not conducted within the region where the bulk
of cross tropopause transport occurs, i.e., the tropical up-
per troposphere and lower stratosphere. Furthermore, inves-
tigation of only the SG injection may fall short in properly
budgeting Bry, since it ignores the contribution of Br tied
to aerosols, and inorganic bromine species (e.g., HBr, BrO).
Evidence for a sizeable inorganic product gas (PG) contribu-
tion has been found in recent field and theoretical studies and
consequences for stratospheric ozone have been discussed
(e.g.,Pfeilsticker et al., 2000; Murphy and Thompson, 2000;
Salawitch et al., 2005; Salawitch, 2006; Law and Sturges,
2007).

2 Methodology

Within the framework of the European ENVISAT satel-
lite validation activities the LPMA/DOAS (Limb Profile
Monitor of the Atmosphere/Differential Optical Absorption
Spectroscopy) balloon payload probed the tropical tropo-
sphere, and lower and middle stratosphere. Bry was de-
rived from measurements performed by the remote sensing
LPMA/DOAS balloon payload (Camy-Peyret et al., 1993;
Ferlemann et al., 2000). The LPMA/DOAS spectrome-
ters cover the near-UV/visible (DOAS) and near-IR (LPMA)
wavelength ranges, which are suitable for the detection of
O3, NO2, BrO, IO, OIO, CH4, N2O, and other trace-gases
(e.g., Payan et al., 1998; Butz et al., 2006; Dorf et al.,
2006a). The LPMA/DOAS payload was launched at tropi-
cal Teresina, Brazil, (5.1◦ S, 42.9◦W) on 17 June 2005. It
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Fig. 1. Measured BrO (filled points) and modelled partitioning of
inorganic stratospheric bromine species (lines) for the balloon flight
at Teresina for a solar zenith angle (SZA) of 74◦. BrO mixing ratios,
inferred from Langley observations at balloon float altitude (33 km)
(see Fig.2 and text) and inferred total Bry are indicated by the data
shown in the upper right corner. The 3-D CTM SLIMCAT assumes
(Bry)=21.4 ppt for the two model scenarios A and B as described in
the text.

performed direct sun measurements during balloon ascent,
from 2 to 33 km altitude, and during sunset at balloon float al-
titude (33 km) in solar occultation. The cold point tropopause
was located at 17 km.

Bromine monoxide (BrO) is detected in the UV with the
DOAS technique (Platt and Stutz, 2008) in the wavelength
range from 346 nm to 360 nm as recommended byAliwell
et al. (2002). This wavelength range contains the UV vi-
bration absorption bands (4−0 at 354.7 nm, and 5−0 at
348.8 nm) of the A(2π )←X(2π ) electronic transition of BrO.
The set of reference spectra used contains a NO2 reference
spectrum for T=233 K, and two O3 spectra at T=197 K and
T=253 K, in order to account for temperature effects. All
NO2 and O3 spectra were recorded with the balloon spec-
trograph in the laboratory. The BrO reference is the abso-
lute cross-section measured byWahner et al.(1988), with
the wavelength calibration taken from own laboratory mea-
surements.

Profile information was obtained by a least-squares pro-
file inversion technique (Maximum A Posteriori) (Rodgers,
2000). A more detailed description of the DOAS profile in-
version can be found inButz et al.(2006). The SCD values
were smoothed with a Gaussian filter of 1.0 km width, but
since the altitude grid for profile inversion is 2 km, the re-
sults are not influenced significantly. Further details on the
BrO DOAS-retrieval and the profile inversion can be found
in Dorf et al.(2006a).

Fig. 2. Observed BrO absorption along the line-of-sight, taken from
the balloon to the sun, for the balloon float altitude (33 km) mea-
surements at Teresina. Total air-mass (Air-SCD) is calculated from
the observation geometry (balloon position monitored by GPS, so-
lar ephemerides and time) and measured temperature and pressure
profiles. The slope of the line indicates the effective BrO mixing
ratio above balloon float altitude.

In order to assess Bry we calculate the BrO/Bry ratio us-
ing results from the 3-D off-line Chemical Transport Model
(CTM) SLIMCAT (Chipperfield, 1999). SLIMCAT output,
interpolated to the balloon location, was saved at 00:00 UT
every two days. A 1-D model was then used to recon-
struct the diurnal cycle for comparison with the observations.
The stratospheric photochemistry is modelled on 20 poten-
tial temperature (2) levels between2=323 K ('9 km) and
2=1520 K ('42 km). The 1-D column model is initialised,
at each height level, at 00:00 UT with 3-D CTM SLIMCAT
model results. It is an updated version (using JPL-2006 ki-
netics;Sander et al., 2006) of the model used by, e.g.,Butz
et al.(2006) and includes a comprehensive set of all relevant
gas-phase and heterogeneous reactions. Photolysis rates are
interpolated with respect to pressure, temperature, overhead
ozone and solar zenith angle (SZA) from a SLIMCAT lookup
table where the actinic fluxes are calculated as recommended
by Lary and Pyle(1991).

Like in previous studies (e.g.,Dorf et al., 2006a) it is
found useful to constrain the 1-D photochemical calcula-
tions with the measured abundances of NO2 and O3 taken
from the same instrument (e.g.,Butz et al., 2006). BrO re-
acts efficiently with NO2 to BrONO2, with the photolysis of
BrONO2 being the most important back reaction during day-
time. Therefore, stratospheric BrO is strongly dependent on
NO2 and an appropriate scaling in the 1-D photochemical
modelling reduces potential errors.
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For the measurement of brominated SGs and air-mass ag-
ing the whole-air-sampler BONBON collected samples on
8 June 2005 between 15.2 and 34 km altitude. The whole-
air-sampler accommodates 15 individual stainless steel con-
tainers. The samples were analysed by gas chromatog-
raphy/mass spectrometry for brominated source-gases –
CH3Br, the halons, and brominated VSLS (CHBr3, CH2Br2,
CH2BrCl, CHBrCl2 and CHBr2Cl). Details are described by
Laube et al.(2008).

3 Results and discussion

Maximum BrO mixing ratios of about 16 ppt were detected
at and above balloon float altitude at 33 km (Fig.1). A Lan-
gley plot is shown in Fig.2, where the measured BrO ab-
sorption is analysed as a function of the calculated total air-
mass at balloon float altitude for a solar zenith angle (SZA)
range between 87.8◦ and 90.0◦. The slope of this correla-
tion, (16.1±0.7) ppt, indicates the effective BrO mixing ratio
above balloon float altitude. Stratospheric Bry is calculated
from the modelled BrO/Bry partitioning weighted with the
relative BrO concentration in each atmospheric layer. This
ratio can be obtained by considering the bromine chemistry
above balloon float altitude at daytime. In the sunlit upper
stratosphere, the most important bromine reactions (≥90%)
are (a) the photolysis of BrO and (b) the reaction of atomic
bromine with O3. Inaccuracies in this photochemical scheme
are due to the BrO cross section, the quantum yield for BrO
photo-dissociation, the rate reaction coefficient kBr+O3 and
the ozone concentration. From mean BrO/Bry=0.75 we infer
Bry=(21.5±2.5) ppt. The total error (1-σ ) represents the pre-
cision as well as uncertainties in the BrO cross section (±8%)
and the photochemical correction used to convert BrO to Bry
(±8%) (seeDorf et al., 2006a).

In the lower and middle troposphere BrO concentrations
are compatible with zero within the uncertainties (around
1 ppt, depending on altitude – see Fig.1). The very low, or
even negligible, BrO concentrations (<1ppt) for the lower,
middle and upper troposphere agree with recent studies of
(Schofield et al., 2004, 2006), but largely challenges other
findings (Richter et al., 1998; Fitzenberger et al., 2000; Van
Roozendael et al., 2002; Salawitch et al., 2005; Hendrick
et al., 2007; Fietkau et al., 2007; Theys et al., 2007). With
regard to these contrasting findings, it is not clear whether
the bromine released during the breakup process of the VSLS
in the troposphere either (1) quickly reacts into less reactive
forms of bromine (HBr, HOBr, and BrONO2) without being
efficiently activated on particle surfaces (von Glasow et al.,
2004; Iraci et al., 2005), or (2) is permanently taken-up by
particles and eventually washed-out, or (3) whether the re-
verse is true and we (and others) simply missed probing the
right air-masses in the tropics, in which the brominated PGs
can efficiently become activated into BrO.

Fig. 3. Correlation plot for measured versus modelled BrO SCDs
during ascent for the Teresina 2005 balloon flight. The two model
runs are described in the text.

For the local tropopause (17 km) the observed BrO
concentration is (2.0±1.5) ppt. Above the tropopause,
BrO rapidly increases with height as shown in Fig.1 –
BrO=(3.2±1.6) ppt at 18 km. This rapid increase of BrO
indicates that a considerable amount of brominated species
with a rather short lifetime and PGs are injected, which read-
ily release bromine atoms. A model comparison supports
this finding. We use two SLIMCAT model runs (Feng et al.,
2007) denoted Scenario A and B, in order to explain the BrO
observations during balloon ascent below 25 km. Scenario A
differentiates between the individual contributions of CH3Br
(9.6 ppt), the halons (6.8 ppt), and VSLS (4 ppt as CH2Br2)
plus PGs (1 ppt as HBr). In Scenario B the only source
gas in the model is CH3Br, solely accounting for 21.4 ppt
of bromine. The correlation between the measured versus
modelled BrO slant-column densities are plotted in Fig.3 for
balloon ascent measurements. The better agreement between
Scenario A and the measurements can also be observed in
Fig. 1 where the solid lines represent Scenario A and the
dashed lines Scenario B. Implications of this composition of
brominated SGs for ozone loss and model details are dis-
cussed inFeng et al.(2007). In the stratosphere the SG con-
centrations rapidly decrease with height as the air-masses as-
cend further. Photolysis and reactions with OH lead to the
formation of inorganic bromine species. Thereby ozone de-
pleting bromine atoms are released on a timescale that is on
the order of the individual substance’s lifetime. Thus the re-
leased bromine atoms are found in the inorganic PGs. Once
the air-masses have reached the tropical middle stratosphere,
all SGs are destroyed (Fig.1). Our data suggest complete de-
struction of the brominated SGs between 27 to 30 km in the
tropical stratosphere, in agreement withLaube et al.(2008)
who found no SG signal above 30 km.
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Fig. 4. Correlation plot for measured versus modelled BrO SCDs
for occultation measurements between 90.0◦ and 93.7◦ SZA.

One should note that the inclusion of halons in Scenario
B (keeping total Bry at 21.4 ppt) would further slow down
the increase of Bry with altitude. This would enlarge the dis-
crepancy between the two model scenarios. Therefore the in-
clusion of VSLS in Scenario A not only compensates for the
slower increase of Bry due to the consideration of halons in
the model (instead of only CH3Br as in Scenario B), but leads
to an even more rapid increase of Bry above the tropopause,
which is needed to explain our observations.

Furthermore, the modelled and measured BrO values dur-
ing solar occultation (SZA>90◦) at balloon float do not
match (this corresponds to tangent-heights of the line-of-
sights through the atmosphere from 33 km down to 18 km).
The discrepancy applies to both model scenarios, since Bry
is equal in the relevant altitude range. This is unlike pre-
vious comparisons (e.g.,Harder et al., 2000) at high and
mid-latitudes. Modelled values are up to 15% larger for
SZA>90◦ (see Fig.4). Scaling of NO2 only has a small ef-
fect on the BrO profile and does not explain the observed
discrepancy. It can be speculated whether the HOx or ClOx
chemistry and therefore HOBr or BrCl play a more impor-
tant role than at mid and high-latitudes. This issue will need
further investigation with future tropical data in combination
with results from other balloon or satellite observations.

A total Bry of (17.5±0.4) ppt was derived from the or-
ganic SG measurements of the BONBON whole-air-sampler
(Laube et al., 2008) – hereafter called Brorg

y . Besides
the long-lived brominated SGs, CH3Br and the halons, the
5 measured VSLS (CHBr3, CH2Br2, CH2BrCl, CHBrCl2
and CHBr2Cl) contributed (1.25±0.16) ppt to Brorg

y . Thus
the inferred Bry from inorganic BrO (Briny ) is significantly
larger, by (4.0±2.9) ppt, than what can be expected from the
measured SGs. Although the difference is quite significant
and most likely systematic, the values lie almost within the

Fig. 5. Correlation between Bry and CFC-11 from balloon data and
modelling.

stated 1-σ uncertainties. Ko et al. (1997) suggested a di-
rect PG injection into the stratosphere, which could be due to
bromine tied in aerosols (Murphy and Thompson, 2000) or
in gaseous form (e.g., HBr, Br, BrO...). Comparing Brin

y to
tropospheric trend measurements of CH3Br and the halons
taken fromMontzka et al.(2003), where no tropospheric loss
of CH3Br is assumed, yields a VSLS plus PG injection of
5.2 ppt into the stratosphere (see also Table1).

Further reasons for the discrepancy between Brin
y and

Brorg
y could be the uncertainties in the SG absolute calibra-

tion scales used by different laboratories (Laube et al., 2008)
and that the contribution of VSLS varies with geolocation
and time. Stronger convection in combination with areas of
stronger VSLS sources on the ground, could lead to higher
Bry. Furthermore, the whole-air-sampler VSLS concentra-
tions represent a local budget for the probed area and time
in the tropical tropopause layer. In contrast, Brin

y is based
on measurements of 4.5 year old air in the longitudinally
well mixed middle stratosphere and might comprise a differ-
ent VSLS contribution. Here we used the whole-air-sampler
N2O measurements for air-mass aging (Engel et al., 2002).

Figure5 gives the correlation between Bry and the tracer
CFC-11, similar to the study ofWamsley et al.(1998). CFC-
11 was taken from the whole-air-sampler, which flew 9 days
earlier, and interpolated in altitude, in order to match the
DOAS altitude grid. TheWamsley et al.(1998) correlation
for November 1994 is plotted as well. Since stratospheric
CFC-11 has declined while Bry has continued to increase,
the values fromWamsley et al.(1998) are not directly com-
parable with our findings.
A similar study for high-latitudes, involving the same instru-
ments, was performed at Kiruna, Sweden (67.9◦ N, 22.1◦ E)
in winter 1999 (Pfeilsticker et al., 2000). Using the Langley
method to derive Briny =(19.9±2.5) ppt, the analysis indicates
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Table 1. Estimated contribution of the very short-lived substances (VSLS) and product-gases (PGs) derived from organic source-gas (SG)
and inorganic Bry measurements.

Kiruna 1999 Teresina 2005

Air-mass age at balloon-float (years) 6.0±1 4.5±1
CH3Br (ppt)a 9.3 8.8
Halons (ppt)a 5.8 7.5
Bry from BrO, Briny (ppt) 19.9±2.5b 21.5±2.5
Inferred VSLS + PG injection, i.e. Brin

y – (CH3Br+halons) (ppt) 4.7 5.2

Bry from SG measurements, Brorg
y (ppt) 18.4 (−1.5 / +1.8) 17.5±0.4

Measured VSL – SGs at stratospheric entry level (ppt) 2.6±0.6 1.25±0.16

Potential maximum PG injection assuming a locally balanced bromine-budget,c

i.e. Briny – (CH3Br+halons+measured VSLS) (ppt) 2.1±2.6 4.0±2.5

a Surface CH3Br and halon data are fromMontzka et al.(2003). We assume no tropospheric loss of CH3Br.
b Value based on the Langley method as compared to the SCD-/profile comparison ofPfeilsticker et al.(2000).
c This is more likely true for the tropics, where most of the upward flux into the stratosphere occurs, than for high-latitudes.

a VSLS plus PG injection of 4.7 ppt (Dorf et al., 2006b).
A reanalysis of the BrO-SCDs and comparison with mod-
elled BrO-SCD values, as shown byPfeilsticker et al.(2000),
yields a Bry of (19.5±2.5) ppt, i.e., 2 ppt smaller than in the
Pfeilsticker et al.(2000) study (21.5 ppt). Here we improved
the calculation of the residual amount of BrO in the reference
spectrum and scaled NO2 in the photochemical model to our
balloon observations, in order to get the correct bromine par-
titioning and therefore Bry. Table1 summarises the values
of the Kiruna (1999) and Teresina (2005) studies using the
Briny derived with the Langley method.

Assuming that no unknown SGs contributed to Brin
y and

that there are no large temporal variations in the VSLS, we
can calculate a potential maximum PG injection for a lo-
cally balanced bromine-budget, with 2.1 ppt for Kiruna 1999
and 4.0 ppt for Teresina 2005 (see Table1). In the tropics,
with a net upward mass flux and the primary troposphere-
stratosphere exchange, these assumptions are more justified
than for high-latitudes. There is certainly the need for com-
prehensive studies in the future, which include dynamical
analysis of the transport of air masses, as well as SG and PG
measurements, from the ground to the lower stratosphere.

The sum for the VSLS and PG injection compares rea-
sonably well with recent, mostly satellite-based BrO stud-
ies, and ranges between 0 and 10.4 ppt. Here the average
and the range of the central values of the considered stud-
ies is 5 ppt and (3–8) ppt, respectively (see Table 2–8 inLaw
and Sturges, 2007and references therein, andHendrick et al.,
2007). Most of these studies are inherently less accurate than
those possible by balloon-borne spectroscopic BrO observa-
tions, and suffer from the lack of air-mass aging and simulta-
neous VSLS measurements for the investigated air-masses.

4 Conclusions and summary

This study presents the first inner tropical BrO profile from
the troposphere up to the middle stratosphere (4 to 33 km).
A Br in

y concentration of (21.5±2.5) ppt was derived from
balloon-borne BrO measurements in combination with pho-
tochemical modelling. A comparison with different model
scenarios of the 3-D CTM SLIMCAT, differing in the life-
times of the bromine source gases, shows the need for a sig-
nificant VSLS and PG injection into the stratosphere. Our
Briny indicates a total contribution of the VSLS and PGs of
5.2 ppt. Temporally close organic SG measurements, includ-
ing VSLS, indicate a Brorg

y of (17.5±0.4) ppt, which is sig-
nificantly lower than Briny . The difference between Brin

y and

Brorg
y can be explained if accounting for calibration uncer-

tainties, additional unidentified brominated VSLS, the vari-
ability of VSLS in time and space (Laube et al., 2008), and
considering a further source of stratospheric bromine (e.g.,
PG injection).

Our result on reactive bromine and the PG abundance in
the troposphere is inconclusive. Tropospheric BrO is com-
patible with 0 ppt and<1 ppt within the uncertainties. This
is in agreement with studies of (Schofield et al., 2004, 2006),
but contradicts other findings (e.g.,Richter et al., 1998;
Fitzenberger et al., 2000; Salawitch et al., 2005; Theys et al.,
2007). Future research is needed with more sensitive instru-
mentation and sophisticated models in order to reveal the role
that bromine plays for the photochemistry of the troposphere
and UT/LS region.
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