835 research outputs found

    Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing

    Get PDF
    The mammalian motor cortex typically innervates motor neurons indirectly via oligosynaptic pathways. However, evolution of skilled digit movements in humans, apes, and some monkey species is associated with the emergence of abundant monosynaptic cortical projections onto spinal motor neurons innervating distal limb muscles. Rats perform skilled movements with their whiskers, and we examined the possibility that the rat vibrissa motor cortex (VMC) projects monosynaptically onto facial motor neurons controlling the whisker movements. First, single injections of lentiviruses to VMC sites identified by intracortical microstimulations were used to label a distinct subpopulation of VMC axons or presynaptic terminals by expression of enhanced green fluorescent protein (GFP) or GFP-tagged synaptophysin, respectively. Four weeks after the injections, GFP and synaptophysin-GFP labeling of axons and putative presynaptic terminals was detected in the lateral portion of the facial nucleus (FN), in close proximity to motor neurons identified morphologically and by axonal back-labeling from the whisker follicles. The VMC projections were detected bilaterally, with threefold larger density of labeling in the contralateral FN. Next, multiple VMC injections were used to label a large portion of VMC axons, resulting in overall denser but still laterally restricted FN labeling. Ultrastructural analysis of the GFP-labeled VMC axons confirmed the existence of synaptic contacts onto dendrites and somata of FN motor neurons. These findings provide anatomical demonstration of monosynaptic VMC-to-FN pathway in the rat and show that lentivirus-based expression of GFP and GFP-tagged presynaptic proteins can be used as a high-resolution neuroanatomical tracing method

    The Radio Spectrum of TVLM513-46546: Constraints on the Coronal Properties of a Late M Dwarf

    Full text link
    We explore the radio emission from the M9 dwarf, TVLM513-46546, at multiple radio frequencies, determining the flux spectrum of persistent radio emission, as well as constraining the levels of circular polarization. Detections at both 3.6 and 6 cm provide spectral index measurement α\alpha (where Sννα_{\nu} \propto \nu^{\alpha}) of 0.4±0.1-0.4\pm0.1. A detection at 20 cm suggests that the spectral peak is between 1.4 and 5 GHz. The most stringent upper limits on circular polarization are at 3.6 and 6 cm, with V/I<V/I <15%. These characteristics agree well with those of typical parameters for early to mid M dwarfs, confirming that magnetic activity is present at levels comparable with those extrapolated from earlier M dwarfs. We apply analytic models to investigate the coronal properties under simple assumptions of dipole magnetic field geometry and radially varying nonthermal electron density distributions. Requiring the spectrum to be optically thin at frequencies higher than 5 GHz and reproducing the observed 3.6 cm fluxes constrains the magnetic field at the base to be less than about 500 G. There is no statistically significant periodicity in the 3.6 cm light curve, but it is consistent with low-level variability.Comment: 11 pages, 2 figures Accepted for publication in the Astrophysical Journa

    A Chandra X-ray detection of the L dwarf binary Kelu-1: Simultaneous Chandra and Very Large Array observations

    Full text link
    Magnetic activity in ultracool dwarfs, as measured in X-rays and Hα\alpha, shows a steep decline after spectral type M7-M8. So far, no L dwarf has been detected in X-rays. In contrast, L dwarfs may have higher radio activity than M dwarfs. We observe L and T dwarfs simultaneously in X-rays and radio to determine their level of magnetic activity in the context of the general decline of magnetic activity with cooler effective temperatures. The field L dwarf binary Kelu-1 was observed simultaneously with Chandra and the Very Large Array. Kelu-1AB was detected in X-rays with LX=2.91.3+1.8×1025L_{\rm X} = 2.9_{-1.3}^{+1.8} \times 10^{25} erg/s, while it remained undetected in the radio down to a 3σ3 \sigma limit of LR1.4×1013L_{\rm R} \leq 1.4 \times 10^{13} erg/s/Hz. We argue that, whereas the X-ray and Hα\alpha emissions decline in ultracool dwarfs with decreasing effective temperature, the radio luminosity stays (more or less) constant across M and early-L dwarfs. The radio surface flux or the luminosity may better trace magnetic activity in ultracool dwarfs than the ratio of the luminosity to the bolometric luminosity. Deeper radio observations (and at short frequencies) are required to determine if and when the cut-off in radio activity occurs in L and T dwarfs, and what kind of emission mechanism takes place in ultracool dwarfs.Comment: Accepted for publication as a Letter in Astronomy & Astrophysic

    VLA multifrequency observations of RS CVn binaries

    Get PDF
    We present multiepoch Very Large Array (VLA) observations at 1.4 GHz, 4.9 GHz, 8.5 GHz and 14.9 GHz for a sample of eight RS CVn binary systems. Circular polarization measurements of these systems are also reported. Most of the fluxes observed are consistent with incoherent emission from mildly relativistic electrons. Several systems show an increase of the degree of circular polarization with increasing frequency in the optically thin regime, in conflict with predictions by gyrosynchrotron models. We observed a reversal in the sense of circular polarization with increasing frequency in three non-eclipsing systems: EI Eri, DM Uma and HD 8358. We find clear evidence for coherent plasma emission at 1.4 GHz in the quiescent spectrum of HD 8358 during the helicity reversal. The degrees of polarization of the other two systems could also be accounted for by a coherent emission process. The observations of ER Vul revealed two U-shaped flux spectra at the highest frequencies. The U-shape of the spectra may be accounted for by an optically thin gyrosynchrotron source for the low frequency part whereas the high frequency part is dominated by a thermal emission component.Comment: 12 pages, 8 figures, LaTeX, uses aa.cls. Accepted for publication in A&

    Thermodynamics of C incorporation on Si(100) from ab initio calculations

    Full text link
    We study the thermodynamics of C incorporation on Si(100), a system where strain and chemical effects are both important. Our analysis is based on first-principles atomistic calculations to obtain the important lowest energy structures, and a classical effective Hamiltonian which is employed to represent the long-range strain effects and incorporate the thermodynamic aspects. We determine the equilibrium phase diagram in temperature and C chemical potential, which allows us to predict the mesoscopic structure of the system that should be observed under experimentally relevant conditions.Comment: 5 pages, 3 figure

    The Search for Signatures Of Transient Mass Loss in Active Stars

    Get PDF
    The habitability of an exoplanet depends on many factors. One such factor is the impact of stellar eruptive events on nearby exoplanets. Currently this is poorly constrained due to heavy reliance on solar scaling relationships and a lack of experimental evidence. Potential impacts of Coronal Mass Ejections (CMEs), which are a large eruption of magnetic field and plasma from a star, are space weather and atmospheric stripping. A method for observing CMEs as they travel though the stellar atmosphere is the type II radio burst, and the new LOw Frequency ARray (LOFAR) provides a means for detection. We report on 15 hours of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star, taken in LOFAR's beam-formed observation mode for the purposes of measuring transient frequency-dependent low frequency radio emission. The observations utilized Low-Band Antenna (10-90 MHz) or High-Band Antenna (110-190 MHz) for five three-hour observation periods. In this data set, there were no confirmed type II events in this frequency range. We explore the range of parameter space for type II bursts constrained by our observations Assuming the rate of shocks is a lower limit to the rate at which CMEs occur, no detections in a total of 15 hours of observation places a limit of νtypeII<0.0667\nu_{type II} < 0.0667 shocks/hr νCME \leq \nu_{CME} for YZ CMi due to the stochastic nature of the events and limits of observational sensitivity. We propose a methodology to interpret jointly observed flares and CMEs which will provide greater constraints to CMEs and test the applicability of solar scaling relations

    On Temperature and Abundance Effects During an X-Ray Flare on Sigma Geminorum

    Full text link
    We compare quiescent and flare X-ray spectra of the RS CVn binary Sigma Gem obtained with the Chandra and XMM-Newton grating spectrometers. We find that in addition to an overall 25% flux increase, which can be ascribed to variations in the system's quiescence activity over the 15 months that passed between the observations, there is a hot plasma component of kT_e > 3 keV that arises with the flare. The hot component is manifested primarily by emission from high charge states of Fe and by a vast continuum. The cooler (kT_e < 2 keV) plasma remains undisturbed during the flare. We find no significant variations in the relative abundances during the flare except for a slight decrease (<30%) of O and Ne.Comment: 6 pages, 4 figures, Accepted for publication in A&
    corecore