344 research outputs found

    Quality Control Analysis in Real-time (QC-ART) : A Tool for Real-time Quality Control Assessment of Mass Spectrometry-based Proteomics Data

    Get PDF
    Liquid chromatography-mass spectrometry (LC-MS)-based proteomics studies of large sample cohorts can easily require from months to years to complete. Acquiring consistent, high-quality data in such large-scale studies is challenging because of normal variations in instrumentation performance over time, as well as artifacts introduced by the samples themselves, such as those because of collection, storage and processing. Existing quality control methods for proteomics data primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected. In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality because of the need for instrument cleaning and/or re-calibration. To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired to dynamically flag potential issues with instrument performance or sample quality. QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis. We demonstrate the utility and performance of QC-ART in identifying deviations in data quality because of both instrument and sample issues in near real-time for LC-MS-based plasma proteomics analyses of a sample subset of The Environmental Determinants of Diabetes in the Young cohort. We also present a case where QC-ART facilitated the identification of oxidative modifications, which are often underappreciated in proteomic experiments.Peer reviewe

    Ab Initio Structural Energetics of Beta-Si3N4 Surfaces

    Full text link
    Motivated by recent electron microscopy studies on the Si3N4/rare-earth oxide interfaces, the atomic and electronic structures of bare beta-Si3N4 surfaces are investigated from first principles. The equilibrium shape of a Si3N4 crystal is found to have a hexagonal cross section and a faceted dome-like base in agreement with experimental observations. The large atomic relaxations on the prismatic planes are driven by the tendency of Si to saturate its dangling bonds, which gives rise to resonant-bond configurations or planar sp^2-type bonding. We predict three bare surfaces with lower energies than the open-ring (10-10) surface observed at the interface, which indicate that non-stoichiometry and the presence of the rare-earth oxide play crucial roles in determining the termination of the Si3N4 matrix grains.Comment: 4 Pages, 4 Figures, 1 tabl

    Wolbachia Endosymbionts Modify Drosophila Ovary Protein Levels in a Context-Dependent Manner

    Get PDF
    ABSTRACT Endosymbiosis is a unique form of interaction between organisms, with one organism dwelling inside the other. One of the most widespread endosymbionts is Wolbachia pipientis, a maternally transmitted bacterium carried by insects, crustaceans, mites, and filarial nematodes. Although candidate proteins that contribute to maternal transmission have been identified, the molecular basis for maternal Wolbachia transmission remains largely unknown. To investigate transmission-related processes in response to Wolbachia infection, ovarian proteomes were analyzed from Wolbachia-infected Drosophila melanogaster and D. simulans. Endogenous and variant host-strain combinations were investigated. Significant and differentially abundant ovarian proteins were detected, indicating substantial regulatory changes in response to Wolbachia. Variant Wolbachia strains were associated with a broader impact on the ovary proteome than endogenous Wolbachia strains. The D. melanogaster ovarian environment also exhibited a higher level of diversity of proteomic responses to Wolbachia than D. simulans. Overall, many Wolbachia-responsive ovarian proteins detected in this study were consistent with expectations from the experimental literature. This suggests that context-specific changes in protein abundance contribute to Wolbachia manipulation of transmission-related mechanisms in oogenesis. IMPORTANCE Millions of insect species naturally carry bacterial endosymbionts called Wolbachia. Wolbachia bacteria are transmitted by females to their offspring through a robust egg-loading mechanism. The molecular basis for Wolbachia transmission remains poorly understood at this time, however. This proteomic study identified specific fruit fly ovarian proteins as being upregulated or downregulated in response to Wolbachia infection. The majority of these protein responses correlated specifically with the type of host and Wolbachia strain involved. This work corroborates previously identified factors and mechanisms while also framing the broader context of ovarian manipulation by Wolbachia
    corecore