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Wolbachia Endosymbionts Modify Drosophila Ovary Protein Levels in
a Context-Dependent Manner

Steen Christensen,a Ricardo Pérez Dulzaides,a Victoria E. Hedrick,b A. J. M. Zehadee Momtaz,a Ernesto S. Nakayasu,b Lake N. Paul,b

Laura R. Serbusa

Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, Florida, USAa; Bindley Bioscience Center, Purdue Proteomics
Facility, Purdue University, West Lafayette, Indiana, USAb

ABSTRACT

Endosymbiosis is a unique form of interaction between organisms, with one organism dwelling inside the other. One of the most
widespread endosymbionts is Wolbachia pipientis, a maternally transmitted bacterium carried by insects, crustaceans, mites,
and filarial nematodes. Although candidate proteins that contribute to maternal transmission have been identified, the molecu-
lar basis for maternal Wolbachia transmission remains largely unknown. To investigate transmission-related processes in re-
sponse to Wolbachia infection, ovarian proteomes were analyzed from Wolbachia-infected Drosophila melanogaster and D.
simulans. Endogenous and variant host-strain combinations were investigated. Significant and differentially abundant ovarian
proteins were detected, indicating substantial regulatory changes in response to Wolbachia. Variant Wolbachia strains were as-
sociated with a broader impact on the ovary proteome than endogenous Wolbachia strains. The D. melanogaster ovarian envi-
ronment also exhibited a higher level of diversity of proteomic responses to Wolbachia than D. simulans. Overall, many Wolba-
chia-responsive ovarian proteins detected in this study were consistent with expectations from the experimental literature. This
suggests that context-specific changes in protein abundance contribute to Wolbachia manipulation of transmission-related
mechanisms in oogenesis.

IMPORTANCE

Millions of insect species naturally carry bacterial endosymbionts called Wolbachia. Wolbachia bacteria are transmitted by fe-
males to their offspring through a robust egg-loading mechanism. The molecular basis for Wolbachia transmission remains
poorly understood at this time, however. This proteomic study identified specific fruit fly ovarian proteins as being upregulated
or downregulated in response to Wolbachia infection. The majority of these protein responses correlated specifically with the
type of host and Wolbachia strain involved. This work corroborates previously identified factors and mechanisms while also
framing the broader context of ovarian manipulation by Wolbachia.

Symbiotic interactions between organisms, ranging from lethal
parasitism to indispensable mutualism, frame the foundation

of life. Endosymbionts face the same challenges as other microbes,
which must replicate well and spread efficiently to be successful.
However, the molecular mechanisms that contribute to endosym-
biont transmission are not yet well understood. Endosymbiotic
Wolbachia bacteria provide an excellent system to address this
knowledge gap. These alphaproteobacteria of the Rickettsiales or-
der are highly successful in nature, infecting filarial nematodes,
crustaceans, mites, and over 40% of all insect species, including
the well-established model organism Drosophila melanogaster (1–
4). The presence of Wolbachia among this wide range of hosts is
due to effective maternal transmission, analogous to mitochon-
dria (1, 5–7). The ovary produces egg chambers, composed of
germ line and somatic cells, that mature over 3 to 4 days into
completed eggs (8). Wolbachia bacteria are loaded into egg
chambers through vertical and horizontal transmission (9–14),
intracellular replication (15, 16), and achievement of transmis-
sion-enhancing localization patterns (17–20). The actin cyto-
skeleton also contributes to maternal Wolbachia transmission
by facilitating germ line colonization through an unknown
mechanism (21).

With the success of Wolbachia being reliant upon maternal
germ line cells, it is in the interest of Wolbachia to enhance host
fecundity (22–24). Wolbachia bacteria are thought to achieve

this in part by increasing the frequency of germ line stem cell
division (11). Other studies indicate that Wolbachia bacteria
support ovary productivity by enabling proactive management
of toxic iron (25–28), suppressing Sex-lethal (Sxl) mutations
(29), and preventing generalized apoptosis in the germ line (11,
30). The specific factors involved in executing these Wolbachia
impacts on the host germ line are not yet clear. Studies have
used a variety of approaches to investigate expression-related
host responses to Wolbachia (31–42). These analyses of Wolba-
chia-infected cultured cell lines, invertebrate body tissues, and
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intact host organisms to date have yielded a wealth of informa-
tion. When considering how Wolbachia bacteria interact with
and manipulate host germ line cells, the implications of this
diverse set of findings are unclear, however. This study exam-
ines the hypothesis that consensus molecular interactions be-
tween Wolbachia and the host contribute to maternal Wolbachia
transmission. The objective of this study was to assess the conser-
vation of Wolbachia-host interaction mechanisms through analy-
sis of the ovarian proteome.

MATERIALS AND METHODS
Wolbachia strain genotyping. Wolbachia genotyping was performed ac-
cording to a diagnostic assay based on variable-number tandem-repeat
(VNTR) and IS5 markers (43). The profile of fragment sizes matched each
sample with a known strain type. These same fragments were amplified
from Drosophila simulans wRi as a negative control. To further distinguish
wMelCS from the highly similar strain wMelPop, we used previously out-
lined diagnostic approaches (44). Sequencing was performed to identify a
potential single nucleotide polymorphism (SNP) substitution at position
943,443 in the wMelCS genome. Samples were analyzed on an ABI 3100
genetic analyzer with sequencing analysis and GeneScan software (Ap-
plied Biosystems, CA). Octomom copy numbers were determined by
quantitative real-time PCR (qRT-PCR) as previously reported (44). PCRs
were carried out with Maxima SYBR green/ROX quantitative PCR
(qPCR) master mix, using a CFX Connect real-time PCR detection system
(Bio-Rad). Data were analyzed with CFX Manager V.3.1. Relative Octo-
mom copy numbers for each Wolbachia-infected host combination were
calculated by methods reported previously (45).

Fly strains and rearing. The D. melanogaster genetic background used
for all proteomic analyses was an uninfected w;Sp/Cyo;Sb/TM6B strain.
wMel and wMelCS strains described in previous studies were crossed into
this line to ensure a uniform genetic background for all experiments (17,
44). The strain of D. simulans used as a control was a w� stock that was
cured of Wolbachia with tetracycline 10 years ago. The wRi Wolbachia
strain endogenous to D. simulans and the wMel Wolbachia strain trans-
fected into D. simulans (46) were backcrossed into the cured fly stock for
six generations to standardize the D. simulans genetic background used in
this study.

All Drosophila populations used in this study were maintained at 25°C
on a 12-h light/dark cycle. The flies were housed in bottles containing food
that was generated in-house, based upon a modified Bloomington Stock
Center recipe for Drosophila medium (47, 48). The fly food was prepared
in batches consisting of 20 liters water, 337 g yeast, 190 g soy flour, 1,325 g
yellow corn meal, 96 g agar, 1.5 liters Karo light corn syrup, and 94 ml
propionic acid.

Sample collection for proteomic analysis. Flies were collected from
equally aged generations during the first 3 days of eclosion only. Food
bottles were cleared, and newly emerged flies were collected after 24 h to
ensure equal age among parallel experimental cohorts. Flies were then
aged for 2 days in vials and subsequently transferred onto new food for 3
more days. Comparability between samples was maximized by running all
procedures in parallel for the flies used in each biological replicate. Sam-
ples were prepared from a minimum of 25 flies for each biological repli-
cate for all six Wolbachia host-strain combinations. Ovaries were dis-
sected in 0.8 to 1.0 ml of ice-cold lysis buffer (50 mM NH4HCO3, 1 mM
EDTA, 2 mM sodium vanadate). The uninfected and cured flies were
always dissected first, and all dissection equipment (i.e., dissection dish
and tweezers) was cleaned with 70% ethanol and rinsed with lysis buffer
between dissections for each sample. Immediately after dissection, ovar-
ian samples were imaged on a Leica MZ6 stereomicroscope at a �10
magnification with a 1.6� zoom. Ovary size and staging were also as-
sessed, and replicates presenting heterogeneous morphology between
sample types were discarded. Tissue for which follow-up processing was
performed was transferred into 1.5-ml centrifuge tubes, all excess solution
was removed, and tissue was flash-frozen. Four biological replicates of

each sample type were shipped overnight to the Purdue Proteomics Facil-
ity (Bindley Bioscience Center, Discovery Park, West Lafayette, IN) to be
analyzed by a shotgun approach referred to as “discovery-based proteom-
ics” (49–51).

Sample digestion. Gel bands were cut into 1-mm pieces and washed to
remove the stain with 50:50 acetonitrile (ACN)–25 mM ammonium bi-
carbonate (ABC) (vol/vol). After washing, the samples were reduced and
alkylated. Sequence-grade Lys-C–trypsin (Promega) was used to enzy-
matically digest the samples. All digestions were carried out with a Baro-
cycler NEP2320 instrument (Pressure BioSciences) at 50°C under 20 kilo-
pounds per square inch for 2 h. Peptides were recovered from gel samples
by using 60% ACN–5% trifluoroacetic acid (TFA)–35% purified H2O
with sonication in an ice bath. The supernatant was removed from the
gels, and a vacuum centrifuge was used to dry samples. The resulting pellet
was resuspended in 10 �l of 97% purified H2O–3% ACN– 0.1% formic
acid (FA). A 5-�l volume was used for nanoscale liquid chromatography-
tandem mass spectrometry (NanoLC-MS/MS) analysis.

LC-MS/MS analysis. The samples were analyzed on a Nano Eksigent
425 high-performance liquid chromatography (HPLC) system coupled to
a Triple TOF 5600 Plus instrument (ABsciex, Framingham, MA) (52).
The gradient was 120 min at 300 nl/min over the cHiPLC-nanoflex sys-
tem. The trap column was a Nano cHiPLC 200-�m by 0.5-mm ChromXP
C18-CL 3-�m 120-Å column, followed by the analytical column, a Nano
cHiPLC 75-�m by 15-cm ChromXP C18-CL 5-�m 120-Å column. The
sample was injected into the Triple TOF 5600 Plus column through the
Nanospray III source. Data acquisition was performed for 50 precursors at
50 ms/scan. Three technical replicates of this analysis were performed for
each sample.

Proteomic data analysis. Initial data analysis was performed by using
PeakView (ABsciex) and Mascot (Matrix Science) for database searches.
D. melanogaster and D. simulans peptide information was compared to
information in the respective databases for each host and assigned Uni-
Prot identifiers accordingly. All isoform information corresponding to
each protein was grouped together for classification as a single protein. To
facilitate comparisons of D. melanogaster to D. simulans proteins, each D.
simulans protein was assigned the name of its nearest D. melanogaster
homolog. Intensity-based absolute quantification (iBAQ) of the protein
amount (53) was used as a measure of initial protein detection for each
sample type. Label-free quantification (LFQ) was performed by using
MaxQuant (54) to identify proteins that satisfied a quality scoring func-
tion, enabling comparisons of protein quantity between infection condi-
tions. Both iBAQ and LFQ data were recorded from 4 biological and 3
technical replicates for a combined total of 12 replicates per experi-
mental condition. Proteins designated “reliable” were required to have
been detected in 2 out of 3 technical replicates and 3 out of 4 biological
replicates according to the LFQ data in order to be included in further
data analyses. A coefficient of variation (CV) was also calculated for
each significant protein by using the average of LFQ scores from all
biological replicates. Only proteins exhibiting a CV below 50% were
included in the final list of reliable hits. The reliable proteins were
analyzed by using a one-way analysis of variance (ANOVA) approach
to identify statistically significant proteins, based upon the LFQ scores
of each biological replicate.

Differential protein abundance between sample types was determined
by creating pairwise ratios of the average protein LFQ scores for each
sample type. For D. melanogaster, differential abundance comparisons
were made between the Dmel wMel/Dmel Uninf, Dmel wMelCS/Dmel
Uninf, and Dmel wMel/Dmel wMelCS strains. For D. simulans, differential
abundance comparisons were made between the Dsim wRi/Dsim Cured,
Dsim wMel/Dsim Cured, and Dsim wMel/Dsim wRi strains. Proteins that
showed an abundance change of �0.58 (log2)-fold (equivalent to a 1.5-
fold change) were considered to represent differentially abundant pro-
teins. In terms of regular numbers, these thresholds are indicated by a
�0.67-fold change or a �1.5-fold change (38).

To assign the significant and differentially abundant proteins to func-
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tional classes, we first retrieved sequence information for each UniProt
identification (55). An eggNOG v4.5 sequence search was then performed
(56) to assign each protein to 1 of 20 possible orthologous groups. The
first orthologous group assigned by eggNOG was selected as the initial
functional classification for each of the proteins, followed by refinement
of certain classifications in consultation with FlyBase and the scientific
literature.

DNA extraction for qPCR. Wolbachia titers were assessed by qPCR
analysis of six biological replicates from each host-strain combination. All
flies were prepared as described above, and all sample types were run in
parallel for each replicate. In running each replicate, ovary pairs were
dissected from 5 females of each sample type. These pairs were homoge-
nized in 200 �l of 0.1 M Tris HCl, 0.1 M EDTA, and 1% SDS (pH 9.0) and
incubated for 30 min at 70°C. Twenty microliters of 3 M sodium acetate
was added, and samples were mixed by shaking. After incubation for 30
min on ice, the samples were centrifuged at 14,000 rpm for 15 min at 4°C.
Two hundred microliters of the supernatant containing DNA was col-
lected, and DNA was precipitated to a final volume of 50 �l by ethanol
precipitation. Briefly, 500 �l of absolute ethanol was added to 200 �l of
the supernatant. The sample was gently mixed and kept at �20°C for 1 h.
After centrifugation of the sample at 14,000 rpm for 15 min at 4°C, the
supernatant was removed carefully, and 1 ml of 70% ethanol was added to
the pellet. After 1 min, samples were centrifuged again at 14,000 rpm for
15 min at 4°C. After the supernatant was discarded, the DNA pellet was air
dried and resuspended in 50 �l of water. These DNA samples were diluted
1:10 for use in qPCR.

Real-time quantitative PCR analysis. Real-time PCRs were carried
out with a CFX96 real-time PCR detection system (Bio-Rad). Each reac-
tion was performed with a 20-�l final volume containing 10 �l of Maxima
SYBR green-fluorescein qPCR master mix (Thermo Scientific), 0.5 �l of 5
mM each primer, and 2 �l of diluted DNA. Primers for the Wolbachia-
specific protein (Wsp) gene were used (44). Wsp plasmid standards rang-
ing from 102 to 108 copy numbers were used to generate a standard curve
for absolute quantification. The thermal cycling protocol for Wsp ampli-
fication involved a 50°C incubation for 2 min and then denaturation for
10 min at 95°C, followed by 40 cycles of 95°C for 30s, 57°C for 1 min, and
72°C for 30 s. Melting curves were examined to confirm the specificity of
the amplified product. Data were analyzed by using Bio-Rad CFX man-
ager3.1 with default threshold settings. Absolute Wolbachia copy numbers
were obtained by comparing threshold cycle (CT) values with a standard
curve generated from the plasmid standard.

RESULTS
Each host-strain combination had ovarian proteins that were
reliable in abundance. To investigate the impact of Wolbachia on
maternal transmission, this study focused on analyzing D. mela-
nogaster and D. simulans ovaries of various infection statuses. D.
melanogaster stocks that carried the native wMel strain (Dmel
wMel) or the virulent wMelCS strain (Dmel wMelCS) (44) were
derived from the same genetic background as uninfected control
flies (Dmel Uninf). D. simulans stocks that carried the native wRi
strain (Dsim wRi) or the artificially introduced wMel strain (Dsim
wMel) were also generated (46) in the same genetic background as
control flies cured with tetracycline (Dsim Cured). The identity of
all Wolbachia strains was confirmed with diagnostic PCR assays,
sequencing, and quantitative real-time PCR as described previ-
ously (43, 44, 57). The use of strain-specific markers confirmed
that the D. melanogaster and D. simulans hosts infected with wMel
carried the same wMel1 strain type (Tables 1 and 2). The other
infected D. melanogaster line was verified to carry the wMelCS

strain and not wMelCS2 or wMelPop variant types (Table 1), based
upon the abundance of tandem repeats, the absence of additional
Octomom repeats, and the absence of a specific G¡A transition
found in the wMelPop strain (44, 58). From this point forward, the
confirmed Dmel wMel and Dsim wRi host-strain combinations
are collectively referred to as “endogenous,” and the Dmel wMelCS

and Dsim wMel combinations are referred to as “variant.”
To assess the impact of Wolbachia on the Drosophila ovary

proteome, ovaries were dissected from all host-strain combina-
tions and analyzed by label-free LC-MS/MS. Four biological rep-
licates were collected for each sample type, and 3 technical repli-
cates were analyzed per sample, for a total of 12 replicates per
sample type. This resulted in the initial identification of 927 pro-
teins from the D. melanogaster ovarian samples (see Table S1 in the
supplemental material). A total of 853 of these proteins were
shared among all host-strain combinations (Fig. 1a). Further
analysis determined that 549 of the shared proteins were based
upon quality peptides in all D. melanogaster sample types (Fig. 1b;
see also Table S1 in the supplemental material). In D. simulans,

TABLE 1 Genotyping of host-specific Wolbachia variants used in this studya

Strain

Size of PCR product (kb) (no. of copies)b

Fragment size of
WD0983 (bp)

Presence of G or A
at position 943443

Octomom
copy no.VNTR-105 VNTR-141 IS5-WD0516/7 IS5-WD1310

Published variants
wMel 1.35 (5) 1.33 (7) 2.49 (�) 0.75 (�) 550 G 1
wMel2 1.35 (5) 1.19 (6) 2.49 (�) 0.75 (�) 550 G 1
wMel3 1.35 (5) 1.33 (7) 1.57 (�) 0.75 (�) 550 G 1
wMelCS 1.25 (4) 1.19 (6) 1.57 (�) 1.67 (�) 550 G 1
wMelCS2 1.35 (5) 1.19 (6) 1.57 (�) 1.67 (�) 550 G 1
wMelPop 1.25 (4) 1.19 (6) 1.57 (�) 1.67 (�) 550 A Varies (1–15)

Laboratory strains
Dmel wMel 1.35 1.33 2.49 0.75 550 G 1
Dmel wMelCS 1.25 1.19 1.57 1.67 550 G 1
Dsim wMel 1.35 1.33 2.49 0.75 550 G 1
Dsim wRi ND ND ND ND ND ND 0

a Diagnostic VNTR and insertion sequence element (IS5) regions were analyzed as described previously (43). The expected product size for a given variant as well as those
determined for laboratory strains are listed. Distinguishing criteria for wMelCS and wMelPop, including the G-to-A transition at position 943443 and the Octomom copy number,
are also shown (44).
b Presence or absence is represented by � or �, respectively. ND, not detected.
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834 total proteins were initially identified (see Table S2 in the
supplemental material). A total of 762 of these proteins were
shared among all D. simulans ovary proteomes analyzed (Fig. 1d).
A total of 449 of these shared D. simulans protein identifications
were based upon quality peptide information (Fig. 1e; see also
Table S2 in the supplemental material). Taken together, these data
indicate that 54 to 59% of the protein identifications initially as-
sociated with D. simulans and D. melanogaster ovarian proteomes
were assigned with high confidence. This set of consensus quality
proteins is pursued further in the analyses described below.

The next phase of analysis focused on identifying which con-
sensus quality proteins were reliably detected during oogenesis for
each host-strain combination. This required protein detection in
at least 2 out of 3 technical replicates per biological sample and at
least 3 out of 4 biological samples of each sample type. The coef-
ficient of variation (Gini coefficient) was also calculated for each
quality protein hit, and proteins with a CV below 50% were se-
lected as described previously (59). These rigorous criteria defined
316 proteins as being “reliable” among all the D. melanogaster
ovarian proteomes analyzed (Fig. 1c; see also Table S1 in the sup-
plemental material). A total of 279 proteins were reliably detected
within all ovarian proteomes of D. simulans (Fig. 1f; see also Table
S2 in the supplemental material). All quantitative analyses of the

ovarian proteomes described below focus on these reliable pro-
teins.

Most Wolbachia-associated proteomic changes are re-
stricted to a given host type. To identify ovarian proteins that
exhibit significant abundance changes in Wolbachia-infected tis-
sue, comparisons between sample types were performed by using
ANOVA. For D. melanogaster, this analysis revealed 61 host pro-
teins whose abundance changed significantly under one or more
of the Wolbachia-infected conditions (see Table S3 in the supple-
mental material) (P � 0.05). The Wolbachia surface protein, Wsp,
was also identified in Dmel wMel and Dmel wMelCS samples only.
For D. simulans, ANOVA identified 49 host proteins that exhib-
ited significantly altered abundance in one or both Wolbachia-
infected samples (see Table S4 in the supplemental material) (P �
0.05). These ovarian proteins are referred to here as “significant
proteins.”

To address the overall functional implications of the group of
significant proteins, each protein was assigned to a functional
class, based on information from the eggNOG v4.5 program and
the Drosophila literature. This analysis grouped the significant
proteins into 15 functional classes (Fig. 2a and c). Six functional
classes were specific to either D. melanogaster or D. simulans and
represented �10% of the total proteins. The remaining 9 func-
tional classes were shared between host types. Translation-related
proteins were highly represented, comprising up to half of the signif-
icant proteins overall. The other shared functional classes were car-
bohydrate transport and metabolism; chromatin structure and dy-
namics; cytoskeleton and cell motility; energy conversion; lipid
transport and metabolism; protein modification, folding, and turn-
over; RNA binding, processing, and modification; and signal trans-
duction (Fig. 2a and c). This implicates a diverse subset of ovarian
cellular processes as being responsive to Wolbachia.

The similarity of D. melanogaster and D. simulans ovarian re-
sponses to Wolbachia was further assessed in terms of overlap
between consensus significant proteins. As D. simulans annota-
tion is less extensive than that of D. melanogaster, all D. simulans
proteins were named as per the closest D. melanogaster homologs
to facilitate this comparison. Out of 95 total significant proteins,
this analysis identified 15 significant proteins as being shared be-
tween D. melanogaster and D. simulans ovarian proteomes (see
Tables S3 and S4 in the supplemental material). These proteins
were glycogen phosphorylase, the ATP synthase delta subunit, ret-
inoid- and fatty acid-binding glycoprotein, heat shock proteins 26
and 27, the hnRNP protein Squid, and 9 different ribosomal pro-
teins (see Tables S3 and S4 in the supplemental material). Thus, a

TABLE 2 Quantitative PCR of host-specific Wolbachia variants

Gene Slope PCR efficiency Dilution

CT for indicated host-strain combination

Dmel wMel Dmel wMelCS Dsim wMel Dsim wRi

Reference wsp gene �3.108 2.0977 1:10 19.15 21.71 21.46 21.55
�3.108 2.0977 1:100 22.29 25.05 24.48 24.86

Target WD0513 gene �3.085 2.1094 1:10 19.21 21.97 21.8 32.97
�3.085 2.1094 1:100 22.26 24.49 24.53 35.25

Fold change relative to control 1:10 1.00 0.85 0.80 0.00
1:100 1.00 1.46 0.93 0.00

Mean (SE) 1.00 (�0.0) 1.16 (�0.43) 0.87 (�0.09) 0.00 (�0.00)

FIG 1 Systematic identification of reliable ovarian proteins shared within
each host type. Venn diagrams represent the total number of proteins and the
extent of content overlap between each sample type. (a to c) These data are
indicated for D. melanogaster at the level of detection (a), quality peptide
identification (b), and reliability (c). (d to f) The D. simulans samples had
slightly fewer proteins represented overall in the categories of detection (d),
quality peptide identification (e), and reliability (f). Proteins detected in
Wolbachia-free samples are shown in black. Endogenous Wolbachia-host
combinations are shown in white. Variant Wolbachia-host combinations are
shown in gray.

Contextual Wolbachia Impact on the Ovary Proteome

September 2016 Volume 82 Number 17 aem.asm.org 5357Applied and Environmental Microbiology

http://aem.asm.org


limited redundancy of individual proteins was evident among the
significant ovarian proteins of D. melanogaster and D. simulans.

To assess the putative functional impact of Wolbachia-respon-
sive significant proteins, the magnitude of protein abundance
changes was examined. As in previous proteomics studies, differ-
ential abundance on the order of a �1.5-fold change is predicted
to indicate functional upregulation. Conversely, a �0.667-fold
change is predicted to indicate functional downregulation (38,
60–62). Comparisons of the significant protein data yielded 25
differentially abundant proteins in D. melanogaster, representing
11 functional classes (Fig. 2b and Table 3). Seventeen differentially
abundant proteins were detected in D. simulans, comprised of 9
functional classes (Fig. 2d and Table 4). The 8 classes of differ-
entially abundant proteins shared between host types were car-
bohydrate transport and metabolism; chromatin structure and
dynamics; cytoskeleton and cell motility; energy production
and conversion; lipid transport and metabolism; protein mod-
ification, folding, and turnover; RNA binding, processing, and
modification; and translation, ribosomal structure, and bio-
genesis (Fig. 2b and d). This suggests that the differentially abun-
dant proteins represent a distinct subset of significant proteins.
The differential abundance data also indicated that the composi-
tion of each shared functional class is largely organism specific.
The few differentially abundant proteins that were shared between
hosts were glycogen phosphorylase, the ATP synthase delta sub-
unit, and heat shock proteins 26 and 27.

Differential protein abundance patterns associated with
host and Wolbachia types. To further define the impact of spe-
cific Wolbachia strains on the host ovary proteome, host-strain
combinations were examined in terms of the commonalities that
they share. One issue was to determine the extent of overlap be-
tween proteomic responses to endogenous and variant Wolbachia
infections. In D. melanogaster, comparison of Dmel wMel to Dmel
Uninf yielded 3 differentially abundant proteins, whereas com-
parison of Dmel wMelCS to Dmel Uninf yielded 12 (Table 3). In D.
simulans, comparison of Dsim wRi and Dsim Cured revealed 6
differentially abundant proteins, while comparison of Dsim wMel

to Dmel Cured identified 13 (Table 4). This suggests that infec-
tions by variant Wolbachia strains had a more robust impact than
infections by endogenous Wolbachia strains on ovarian proteomic
responses at the level of differential abundance.

Another issue to address was the extent of bacterial versus host
influence on the ovarian proteomic responses to Wolbachia. To
assess the consistency of responses associated with a single Wolba-
chia strain, ovarian responses to wMel were tracked across host
types. This analysis indicated that distinctive proteomic responses
were evident in the natural D. melanogaster host compared to the
ectopic D. simulans host (Tables 3 and 4). The similarity of host
responses to multiple Wolbachia strains was also investigated. Di-
rect comparison of Dmel wMelCS to Dmel wMel identified 11
additional differentially abundant proteins, including the Wolba-
chia surface protein (Wsp) (Table 3). Most of these hits were due
to oppositely directed protein abundance shifts under each
Wolbachia infection condition. Direct comparison of Dsim wMel
to Dmel wRi identified 8 differentially abundant proteins as well.
However, nearly all these shifts were redundant with shifts already
identified in comparisons between infected and uninfected D.
simulans ovaries (Table 4). This suggests that ovarian proteomic
responses to different Wolbachia strains were milder and more
diversified in D. melanogaster than in D. simulans, where all-or-
nothing responses were predominant.

Previous studies showed that high-titer Wolbachia infections
exert the most extensive impact on host physiological processes
(44, 63–65). This precedent raises questions about the role of
Wolbachia titer in specifying Wolbachia-associated changes in the
ovary proteome. Real-time quantitative PCR was performed to
assess ovarian Wolbachia abundance. The data indicated that
Dmel wMelCS ovaries carried only 51% of the Wolbachia titer de-
tected in Dmel wMel ovaries (P 	 0.047) (n 	 60 ovaries per
condition) (see Fig. S1 in the supplemental material). Ovarian
Wolbachia titers detected in Dsim wRi and Dsim wMel ovaries
were not significantly different from each other or from those in
Dmel wMel ovaries (see Fig. S1 in the supplemental material).
This does not support a role for elevated Wolbachia titers as a

FIG 2 Functional classification of significant and differentially abundant ovarian proteins. The proportional representation of each class is shown for 62
significant D. melanogaster proteins (a), 25 differentially abundant D. melanogaster proteins (b), 49 significant D. simulans proteins (c), and 17 differentially
abundant D. simulans proteins (d). Each class is distinguished by a different color, as indicated by the key on the right.
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determinant of ovarian proteomic responses but alternatively fa-
vors consideration of molecular and cellular mechanisms intrinsic
to each scenario.

DISCUSSION

In applying a proteomic approach to ovarian responses to Wolba-
chia, a central consideration is whether the data set substantiates
current knowledge of infection. Based upon previous work, one
expectation is that variant host-strain combinations should ex-
hibit stress indicators (36, 40, 66, 67). Notably, the variant
Dmel wMelCS and Dsim wMel combinations in this study exhib-
ited depletion of dozens of ribosomal constituents, consistent
with overall downregulation (68–70). Upregulation of heat shock
and detoxification proteins was also seen, consistent with a stress
response (71–73). Ovaries from the Dsim wMel combination have
also been shown to exhibit extensive chromatin structuring de-
fects in nurse cells, analogous to squid mutant organisms (16, 74).
The downregulation of the Squid protein observed here informs
the basis for this response.

Another expectation is that Wolbachia should strategically en-

hance ovarian survival and proliferation mechanisms to maximize
transmission. The findings of this study corroborate the involve-
ment of known factors while also identifying new candidate con-
tributors. The upregulation of the iron-sequestering protein
transferrin 1 is in agreement with previous reports that Wolbachia
bacteria protect the germ line from iron-associated toxicity (25–
28). An increased abundance of the retinoid- and fatty acid-bind-
ing protein, indicated to have heme-binding activity, may help to
protect the germ line from oxidative stress as well (75). Upregula-
tion of the Sxl effector protein, Female-specific independent of
transformer, opens a speculative route for Wolbachia modulation
of Sxl-induced germ line lethality (29, 76, 77). The downregula-
tion of the cell division suppressor 14-3-3 zeta is also consistent
with enhanced germ line stem cell division rates observed for
Wolbachia-infected organisms (11, 78).

It is further expected that Wolbachia bacteria drive modifica-
tions of the ovarian environment that support Wolbachia persis-
tence. Some evidence from this study supports that prediction.
From a nutritional standpoint, an elevated abundance of pro-
teases and proteasome subunits is consistent with the possibility of

TABLE 3 Differentially abundant proteins identified through comparison of D. melanogaster ovarian proteomesa

Functional classification Protein

Relative abundance

wMel/Uninf wMelCS/Uninf wMelCS/wMel

Amino acid transport and metabolism Eip55E 1.271 1.587 1.248

Carbohydrate transport and metabolism Aldolase 0.919 0.630 0.685
Glycogen phosphorylase 0.839 1.447 1.724
Succinyl coenzyme A synthetase 
 subunit NA NA 0.591

Chromatin structure and dynamics Vig2 0.868 1.330 1.533

Cytoskeleton and cell motility Ciboulot 0.858 1.380 1.608

Detoxification Glutathione S-transferase D1 1.028 1.626 1.581
Peroxinectin-like 0.889 1.704 1.917
Transferrin 1 2.000 NA NA

Energy production and conversion ATP synthase, � subunit 0.888 1.367 1.540
Isocitrate dehydrogenase 0.776 1.314 1.693

Lipid transport and metabolism Jabba 0.801 1.298 1.621

Protein modification, folding, and turnover Cysteine proteinase 1 1.042 1.603 1.539
Heat shock protein 26 0.951 1.558 1.639
Heat shock protein 27 1.087 1.525 1.403
Hsc/Hsp70-interacting protein related 0.828 1.266 1.529
Regulatory particle non-ATPase 6 1.098 1.578 1.437

RNA binding, processing, and modification Hoi-polloi 1.214 0.795 0.655
Modulo 1.035 0.687 0.663
Rm62 0.999 0.644 0.644

Signal transduction 14-3-3� 0.611 0.555 0.909
Terribly reduced optic lobes 1.154 0.647 0.561

Translation, ribosomal structure, and biogenesis Ribosomal protein S27 0.989 0.645 0.652
Seryl-tRNA synthetase 0.618 NA NA

Wolbachia protein Wolbachia surface protein NA NA 0.632
a Relative abundance represents a ratio of average LFQ scores for each sample type: Dmel wMel/Dmel Uninf, Dmel wMelCS/Dmel Uninf, and Dmel wMelCS/Dmel wMel. Ratios
indicating protein up- or downregulation are shown in boldface type. NA, not applicable.
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increased amino acid availability for Wolbachia (79). The upregu-
lation of glycogen phosphorylase complements recent work using
Brugia malayi nematodes, which indicated that Wolbachia bacte-
ria induce the upregulation of glycolytic enzymes (80). An in-
creased local availability of pyruvate is hypothesized to benefit
Wolbachia (81). It was also recently shown that filamentous actin
is important for stabilizing Wolbachia colonization of the host
germ line (21). Wolbachia-associated upregulation of tropomyo-
sin, a microfilament-stabilizing protein, is consistent with that
model (82). Taken together, these data support the study out-
comes as being representative while also associating the potential
use of these transmission-enhancing mechanisms with new host-
strain combinations.

It is notable that very few proteins were detected as being sig-
nificant or differentially abundant across all sample types analyzed
in this study. Data sets from previous Wolbachia-omics studies
exhibit a wide range of Wolbachia-responsive host expression
changes, indicating that contextual influences are substantial (31–
42) (see Table S5 in the supplemental material). Analagous to
those prior studies, our study provides substantial evidence of
context-dependent responses to Wolbachia infection. Infections
with endogenous Wolbachia strains had little effect on the host
proteome compared to infections with variant Wolbachia strains,
in agreement with data from previous work on heterologous sym-
biont infections of cnidarians (83). Ovarian proteomic responses
to Wolbachia also correlated poorly with Wolbachia titers, paral-
leling results from a previous fecundity study (84). This argues
against the conservation of Wolbachia-ovary interactions in terms
of specific protein abundance shifts. A combination of effects may
contribute to this outcome, including technical limitations of the

assay (51) as well as Wolbachia adaptation (85), modification of
Wolbachia population structure (85), and/or selection (86). Re-
gardless, the finite physical constraints of transmission inherently
favor Wolbachia manipulation of the most functionally advanta-
geous processes. Context-specific regulation of consensus ovarian
mechanisms may contribute substantially to the achievement of
this goal.
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