88 research outputs found

    A highly osmotolerant rhizobial strain confers a better tolerance of nitrogen fixation and enhances protective activities to nodules of Phaseolus vulgaris under drought stress

    Get PDF
    The effect of water deficiency on nodules of common bean (Phaseolus vulgaris) inoculated with three rhizobial strains differing in their osmotolerance, was investigated in two different experiments on sterile sand. In the first experiment, the control plants were maintained at 90% field capacity (FC) and water-deficient plants were grown at 35% FC. The nitrogen fixation and growth parameters drastically decreased under water deficiency, however the three rhizobial strains, Rhizobium etli A32 (sensitive), Rhizobium tropici CIAT899 (tolerant), and Ensifer meliloti 4H41 (highly tolerant), showed different symbiotic performances. E. meliloti 4H41 allowed the best acetylene reduction activity (ARA) and biomass production and the highest number of large-sized nodules, while no significant effect was observed on lipid peroxidation, protein and legheamoglobin contents. The effect on antioxidant activities was the lowest. In the second experiment, plants were maintained at 90% FC during 45 days and then watering was stopped. The results showed that, the response to water deficit was quite similar for the three analyzed symbioses until 35% FC, but below this value of FC, symbiosis involving strain E. meliloti 4H41 was the most tolerant. This tolerance was accompanied, by in both experiments, by a stability of metabolic indices and protective antioxidant activities. These results suggest that, the relative tolerance of the nodules induced by strain 4H41 could be due to a constructive adaptation involving specific cortex structure and stress-adapted metabolic activities acquired during nodule formation and growth, rather than to a timely inducible response due to the stimulation of antioxidant enzymes. This suggestion should be confirmed through microscopic structure analysis and supplemental key enzymes in nodule metabolism such as sucrose synthase and malate dehydrogenase.Key words: Antioxidant activities, in pots experiment, leghemoglobin content, nodule, rhizobia, osmotolerance, symbiotic efficiency, water deficiency

    Cultivation, cryopreservation and resuscitation of Theileria annulata transformed cells in serum-free media

    Get PDF
    Introduction: Tropical theileriosis is a protozoan disease caused by Theileria annulata that affects cattle in Northern Africa, the Middle East and Asia where vector ticks of the genus Hyalomma occur. Various measures are applied to control the disease, including vaccination with attenuated T. annulata schizonts. Cultivation of T. annulata schizonts is mainly conducted in media containing Fetal Bovine Serum (FBS), which has some disadvantages such as costs, batch- to-batch variation and ethical concerns. Methods: In this study, we conducted three experiments to evaluate the ability of (1) T. annulata strains grown in RPMI with 10% FBS (RPMI-FBS) to adapt and grow in serum-free media (i.e., HL-1, RPMI without FBS supplementation, ISF-1, and M199), (2) a T. annulata strain grown in ISF-1 and subsequently frozen in this medium to grow in ISF-1 again after long-term storage in liquid nitrogen, and (3) a T. annulata strain freshly isolated from infected bovine lymphocytes to growin ISF-1, also after cryopreservation. Cell numbers, schizont index, the viability and generation doubling time were calculated in all experiments. Results and discussion: In the first experiment, the Hessiene and Beja cell lines from Tunisia previously cultivated in RPMI-FBS and adapted to serum-free media continued to grow significantly better in RPMI-FBS compared to the serum-freemedia. In the second experiment, a Tunisian cell line (Hessiene) cryopreserved in ISF-1 with 5%[v/v] dimethylsulfoxide (DMSO) grewbetter after thawing in RPMI-FBS compared to ISF-1 with a highly significant difference in cell growth (p < 0.001), whereas the third experiment showed that the Ankara cell line had similar growth characteristics in both RPMI-FBS and ISF-1 before and after thawing, with a shorter generation doubling time in ISF-1 than in RPMI-FBS (p = 0.23). Our findings suggest that freshly isolated cells can be propagated, frozen and thawed in serum-free media such as ISF-1, but once cells are adapted to cultivation in the presence of FBS or resuscitated from frozen storage, propagation in serum-free media may not perform as well as cultivation in RPMI-FBS

    Sequence polymorphisms in a Theileria annulata surface protein (TaSP) known to augment the immunity induced by live attenuated cell line vaccine

    Get PDF
    Theileria annulata is a tick‐borne protozoan causing tropical theileriosis in cattle. The use of attenuated cell line vaccines in combination with subunit vaccines has been relatively successful as a control method, as exemplified by a recent study in which immunization with a local cell line followed by booster vaccinations with recombinant T. annulata surface protein (TaSP) resulted in 100% protection upon field challenge in Sudan. However, these findings cannot be directly extrapolated to other countries as culture‐attenuated live vaccines are generated using local strains and no systematic evaluation of genotype differences between countries has been undertaken. In this study, we sequenced the TaSP gene from T. annulata cell lines and field isolates from Tunisia (n = 28) and compared them to genotypes from Sudan (n = 25) and Morocco (n = 1; AJ316259.1). Our analyses revealed 20 unique TaSP genotypes in the Tunisian samples, which were all novel but similar to genotypes found in Asia. The impact of these polymorphisms on the ability of the TaSP antigen to boost the immunity engendered by live cell line vaccines, especially in Tunisia where studies with TaSP have not been conducted, remains to be examined. Interestingly, phylogenetic analyses of publicly available TaSP sequences resolved the sequences into two clusters with no correlation to the geographical origin of the isolates. The availability of candidate vaccines that were recently attenuated using local strains from Sudan, Tunisia, Egypt and Morocco should be exploited to generate a comprehensive catalogue of genetic variation across this regional collection of attenuated live vaccines

    Characterization of Mechanically Alloyed Nanocrystalline Fe(Al): Crystallite Size and Dislocation Density

    Get PDF
    A nanostructured disordered Fe(Al) solid solution was obtained from elemental powders of Fe and Al using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. In addition lattice microstrain, average crystallite size, dislocation density, and the lattice parameter were determined. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Thermal behaviour of the milled powders was examined by differential scanning calorimetry (DSC). The results, as well as dissimilarity between calorimetric curves of the powders after 2 and 20 h of milling, indicated the formation of a nanostructured Fe(Al) solid solution

    In vitro feeding of all life stages of two-host Hyalomma excavatum and Hyalomma scupense and three-host Hyalomma dromedarii ticks

    Get PDF
    Ticks are blood-sucking ectoparasites and can transmit various pathogens of medical and veterinary relevance. The life cycle of ticks can be completed under laboratory conditions on experimental animals, but the artificial feeding of ticks has attracted increased interest as an alternative method. This study represents the first report on the successful in vitro feeding of all life stages of two-host tick species, Hyalomma scupense and Hyalomma excavatum, and the three-host tick Hyalomma dromedarii. The attachment and engorgement rates of adults were 84% (21/25) and 76% (19/25) for H. scupense females. For adult H. excavatum and H. dromedarii, 70% (21/30) and 34.4% (11/32) of the females attached and all attached females successfully fed to repletion. The oviposition rates of the artificially fed females were 36.4%, 57.1% and 63.1% for H. dromedarii, H. excavatum and H. scupense, respectively, with a reproductive efficiency index varying between 44.3 and 60.7%. For the larvae, the attachment and engorgement rates were 44.2% (313/708) and 42.8% (303/708) for H. dromedarii, 70.5% (129/183) and 56.8% (104/183) for H. excavatum and 92.6% (113/122) and 55.7% (68/122) for H. scupense. The attachment and engorgement rates for the nymphs were 90.2% (129/143) and 47.6% (68/143) for H. dromedarii, 66.7% (34/51) and 41.2% (21/51) for H. excavatum, and 44.1% (30/68) and 36.8% (25/68) for H. scupense. Molting rates of the immature stages varied between 71.3% (216/303) and 100% (68/68) for the larvae and between 61.9% (13/21) and 96% (24/25) for the nymphs. The successful in vitro feeding of all stages of the three Hyalomma species makes this method a valuable tool for tick research, with potential applications in studies on the pathogens transmitted by these tick species such as Theileria annulata

    Hydrothermal synthesis of (C5H14N2)[CoCl4]âžł0.5H2O: Crystal structure, spectroscopic characterization, thermal behavior, magnetic properties and biological evaluation

    Get PDF
    The organic-inorganic compound (C5H14N2)[CoCl4]âžł0.5H2O, I, was characterized by various physicochemical techniques. The X-ray diffraction analysis revealed that the compound crystallizes in the centrosymmetric space group C2/c of the monoclinic system. The atomic arrangement the Co(II) complex is built from isolated [CoCl4]2– anions, 1-methylpiperazine-1,4-diium [C5H14N2]2+ cations and free water molecules. The crystal structure study showed that the cohesion of I is assured through N–H···Cl and N–H···O hydrogen bonds giving birth to a 3-D architecture. Hirshfeld surface analysis revealed that Cl···H/H···Cl and H···H (58.5 and 36.4%, respectively) are the most significant interactions between species. Minor O···H/H···O interactions are also present. The compound was characterized by thermal analysis, TGA-DTA showed the removal of the co-crystallized water before 100 °C and a first mass loss at around 120 °C. Magnetic measurements are in good agreement with isolated, S = 3/2, tetrahedral [CoCl4]2− anions. The negative Weiss constant of -1.35 indicates single-ion anisotropy and very weak antiferromagnetic interactions. UV–visible spectroscopy reveals three weak absorption bands in the visible range due to the d-d electronic transitions typical of the Co(II) tetra-coordinated. A bioassay showed antibacterial activity against the gram negative Klebsiella pneumonia and gram positive Bacillus ceureus, Listeria monocytogenes, and Micrococcus lutues

    Genetic characterisation of the Theileria annulata cytochrome b locus and its impact on buparvaquone resistance in bovine

    Get PDF
    Control of tropical theileriosis, caused by the apicomplexan Theileria annulata, depends on the use of a single drug, buparvaquone, the efficacy of which is compromised by the emergence of resistance. The present study was undertaken to improve understanding of the role of mutations conferring buparvaquone resistance in T. annulata, and the effects of selection pressures on their emergence and spread. First, we investigated genetic characteristics of the cytochrome b locus associated with buparvaquone resistance in 10 susceptible and 7 resistant T. annulata isolates. The 129G (GGC) mutation was found in the Q binding pocket and 253S (TCT) and 262S (TCA) mutations were identified within the Q binding pocket. Next, we examined field isolates and identified cytochrome b mutations 129G (GGC), 253S (TCT) and 262S (TCA) in 21/75 buffalo-derived and 19/119 cattle-derived T. annulata isolates, providing evidence of positive selection pressure. Both hard and soft selective sweeps were identified, with striking differences between isolates. For example, 19 buffalo-derived and 7 cattle-derived isolates contained 129G (GGC) and 253S (TCT) resistance haplotypes at a high frequency, implying the emergence of resistance by a single mutation. Two buffalo-derived and 12 cattle-derived isolates contained equally high frequencies of 129G (GGC), 253S (TCT), 129G (GGC)/253S (TCT) and 262S (TCA) resistance haplotypes, implying the emergence of resistance by pre-existing or recurrent mutations. Phylogenetic analysis further revealed that 9 and 21 unique haplotypes in buffalo and cattle-derived isolates were present in a single lineage, suggesting a single origin. We propose that animal migration between farms is an important factor in the spread of buparvaquone resistance in endemic regions of Pakistan. The overall outcomes will be useful in understanding how drug resistance emerges and spreads, and this information will help design strategies to optimise the use and lifespan of the single most drug use to control tropical theileriosis. [Abstract copyright: Copyright © 2022. Published by Elsevier Ltd.

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFÎșB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Structure and microstructure evolution of Al-Mg-Si alloy processed by equal-channel angular pressing

    Get PDF
    An ultrafine grained Al–Mg–Si alloy was prepared by severe plastic deformation using the equal-channel angular pressing (ECAP) method. Samples were ECAPed through a die with an inner angle of F = 90° and outer arc of curvature of ¿ = 37° from 1 to 12 ECAP passes at room temperature following route Bc. To analyze the evolution of the microstructure at increasing ECAP passes, X-ray diffraction and electron backscatter diffraction analyses were carried out. The results revealed two distinct processing regimes, namely (i) from 1 to 5 passes, the microstructure evolved from elongated grains and sub-grains to a rather equiaxed array of ultrafine grains and (ii) from 5 to 12 passes where no change in the morphology and average grain size was noticed. In the overall behavior, the boundary misorientation angle and the fraction of high-angle boundaries increase rapidly up to 5 passes and at a lower rate from 5 to 12 passes. The crystallite size decreased down to about 45 nm with the increase in deformation. The influence of deformation on precipitate evolution in the Al–Mg–Si alloy was also studied by differential scanning calorimetry. A significant decrease in the peak temperature associated to the 50% of recrystallization was observed at increasing ECAP passes.Peer ReviewedPreprin
    • 

    corecore