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Abstract 

An ultrafine grained Al–Mg–Si alloy was prepared by severe plastic deformation using 

the Equal Channel Angular Pressing (ECAP) method. Samples were ECAPed through a die 

with an inner angle of Φ=90º and outer arc of curvature of ψ= 37° from 1 to 12 ECAP passes 

at room temperature following route Bc. To analyze the evolution of the microstructure at 

increasing ECAP passes x-ray diffraction and Electron Backscatter Diffraction analyses were 

carried out. The results revealed two distinct processing regimes, namely: i) from 1 to 5 

passes, the microstructure evolved from elongated grains and sub-grains to a rather equiaxed 

array of ultrafine grains and ii) from 5 to 12 passes where no change in the morphology and 

average grain size was noticed. In the overall behavior, the boundary misorientation angle and 

the fraction of high-angle boundaries increase rapidly up to 5 passes and at a lower rate from 

5 to 12 passes. The crystallite size decreased down to about 45 nm with the increase in 

deformation. The influence of deformation on precipitate evolution in the Al–Mg–Si alloy 

was also studied by differential scanning calorimetry. A significant decrease in the peak 

temperature associated to the 50% of recrystallization was observed at increasing ECAP 

passes.  

Keywords: Equal-channel angular pressing (ECAP); aluminum alloy; X-ray diffraction 

(XRD); Microstructure; Differential scanning calorimetry (DSC). 
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1. Introduction 

 

In recent years, great attention of researchers has been drawn to ultrafine-grained 

(UFG) metallic materials in which the structure refinement is achieved by severe plastic 

deformation (SPD) [1–3].  One of the SPD methods having a promising potential for 

industrial applications is the so-called Equal Channel Angular Pressing (ECAP) [4]. During 

ECAP, a sample in the form of a rod or bar is pressed through a die formed by two channels 

of equal cross section intersecting internally at an angle Φ, which usually ranges between 60 

and 160º. There is also an additional angle Ψ that defines the curvature arc at the outer point 

of intersection of the two channels. Among the most important incentives for using this 

technique is that the cross-section sample remains unchanged during processing.  

Al–Mg–Si alloys represent an important group of materials often used as structural 

material for construction and transportation applications thanks to their excellent corrosion 

resistance, weldability, extrudability and response to surface finishing operations. The ECAP 

process is believed to provide a useful tool to make strong Al-Mg-Si alloys through 

microstructural refinement. It is feasible to repeat the pressing several times to achieve a large 

degree of strain and thereby, to refine the grain size to a submicrometer or even nanometer 

level. The nanostructured materials produced by ECAP have a very high strength due to their 

low grain size (and therefore large number of grain boundaries) and high amount of defects, 

such as vacancies, dislocations and staking faults [5-9]. Because most structural 

transformations and mechanical properties are associated with the vacancies, dislocations, 

stacking faults and grain boundaries, a precise quantification of such defects in ultrafine 

grains alloys seems necessary for better understanding and control of the final properties. The 

microstructural features such as the lattice parameter, the average crystallite size, the lattice 

strains, the dislocation density and the phase proportion can be obtained from detailed 

analyses of the X-ray diffraction (XRD) profiles using the Rietveld refinement and the 
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Warren-Averbach, the Williamson-Hall and the Halder-Wagner methods. In the present work, 

the analysis of the XRD profiles was performed via the Halder–Wagner (HW) method. Most 

of these methods evaluate the influence of grain size and strain on the shape of the diffraction 

peaks [10].  

Regarding ECAP processing, many research works have already commonly pointed 

out that during the first passes the microstructure consists of parallel subgrains bands which 

subsequently evolve with further pressing into an array of grains separated by high angle 

grain boundaries (HAGBs) [11, 12]. On the other hand, among the age hardenable aluminum 

alloys, the Al–Mg–Si system has been the object of extensive investigation considering its 

technological importance as the basis of the high strength aluminum alloys. The precipitation 

sequence usually proposed for this type of alloys is as follows [13, 14]:  

Supersaturated solid solution αsss → spherical Guinier-Preston (GP) zones → β″ precipitates → β′ 

precipitates → β precipitates 

The supersaturated solid solution (αsss) is obtained by a solid solution treatment. The 

decomposition starts with the formation and growth of GP-zones (generally spherical 

clusters), meanwhile the pre-aging treatment. β″ precipitates are fine needle-shaped zones 

with monoclinic structure and are found in Al alloys aged to the maximum hardness; β′ 

particles are rod-shaped precipitates with hexagonal structure and are present in overaged 

specimens, and finally β (Mg2Si) is the equilibrium phase in the precipitation sequence. 

Several researches works have shown that both the precipitation kinetics and sequence 

mainly change when the alloy structure is deformed plastically. As the density of defects 

increase, the precipitation temperatures of some phases decrease. Consequently, this behavior 

can lead to the anticipation of the metastable β″/ β′ peak temperature, the creation of obvious 

peak of the GP zones and finally the reduction of Mg2Si and Si amount ratio in the eventually 

formed phases. Farè et al. [15] and Vedani et al. [16] have reported that the precipitation 
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kinetics in Al-Mg-Si alloys depend on the strain accumulated during the ECAP process. They 

noticed that the diffraction peak positions and activation energies were a function of the 

ECAP passes, and explained how the precipitation kinetics in ultra fine grained (UFG) alloys 

was largely affected regarding the coarse-grained materials. 

The aim of the present paper is to process an Al–Mg-Si alloy (AA6060) by ECAP at 

room temperature and provide an interpretation of the results through structural and 

microstructural investigation using XRD and EBSD analyses. Furthermore, the DSC 

technique was used to understand the evolution of precipitation behavior of the deformed 

samples of AA6060 and draw conclusions on their dependence on the ECAP process. 

2. Experimental procedure 

The experiments were conducted using an Al–Mg-Si alloy (AA6060) in the artificially 

aged condition T6. Table 1 presents the chemical composition of the AA6060 used in this 

study. The alloy was received in the form of extruded bar, and then machined into cylindrical 

specimens of 60 mm in length and 10 mm in diameter. The ECAP process was carried  out at 

room temperature through a solid die fabricated from a tool steel with a channel angle of Ф = 

90º  and a curvature angle of ψ = 37°  (Fig. 1) using a pressing speed of 0.02 m/s. 

Molybdenum disulfide (MoS2) was used as lubricant. Samples were pressed from 1 to 12 

passes via route Bc, i.e. the sample was rotated along the longitudinal axis by 90° in the same 

direction after each pass. This route is recognized to lead even most rapidly to a homogeneous 

microstructure of equiaxed grains. As already known, the total strain developed during ECAP 

is given by Iwahashi et al.’s equation (1) [17]: 

                                   εN= 
N

√3
[2cot {(

ϕ

2
) + (

ψ

2
)} + ψcosec {(

ϕ

2
) + (

ψ

2
)}]                             (1) 

where N is the strain after N cycles,  and  are the die corner angle and the die angle, 

respectively. According to equation (1), the geometric configuration presented in Fig. 1 

produced a strain of ~1 in each pass. 
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The x-ray diffraction measurements of the ECAPed Al-Mg-Si samples were carried 

out on a Philips X pert Pro diffractometer with a Cu-Kα radiation between 30° and 90° using 

0.017° per 4 s step size. The instrumental broadening was determined from the measurement 

of an Si standard. The crystallite size <D> and the equivalent lattice strain <ε2>1/2 were 

determined from the peak broadening (β) using the Halder-Wagner (HW) approach [18] based 

on the slope and the ordinate intersection of the line plotted according to the following 

equation (2): 

                                        (β*/d*) 2  = D-1β*/ (d*) 2+ (ε/2)2                                                (2) 

where β*=β cosθ/λ and d*=2 sinθ/λ; θ is the Bragg angle and λ is the wavelength used. 

The lattice parameter before and after ECAP was extracted from a linear regression analysis, 

ahkl deduced from each peak, and plotted using the Nilson–Reley (NR) function given by the 

below equation (3) [19]: 

N-R= (cos2θ/sinθ+cos2θ/θ)/2                                                      (3)                                 

and extrapolated to NR = 0, that is 2θ = 180°. 

 

The microstructures of the deformed samples were characterized by EBSD on the 

transversal plane (XY plane). For this purpose, the samples were cut from the center of the 

ECAP samples and mechanically polished with 2500 grit SiC paper until 0.02 µm colloidal 

silica suspension followed by electropolishing in a 100 ml HClO4+900 ml C2H5OH solution 

at -20 °C and a voltage of 20 V. 

Aiming to clarify the precipitation sequence and the peak temperatures, the miniature 

specimens of 20−35 mg were cut near the axial centre of the as-pressed samples and subjected 

to DSC analysis using a Labsys Evo (1600 °C) facility at a constant heating rate of 20 °C/min 

under argon atmosphere and in a temperature range from 30 to 500 °C. Each sample was 

placed in an Al2O3 crucible and introduced into the DSC furnace, while an empty Al2O3 

crucible was used as reference. 
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3. Results and discussion 

3.1. X-ray diffraction analysis 

Figure 2 depicts the XRD patterns of the analyzed specimens before and after ECAP 

process. As shown in the XRD pattern of the undeformed sample, the (111), (200), (220), 

(311) and (222) fundamental reflections were recorded for the fcc-Al structure. In addition, 

two supplementary peaks at 2=47.88° and 48.62° of lower intensities were identified to be 

characteristic of the Al8Fe2Si fine precipitates with hexagonal structure [20, 21]. Besides, one 

can observe the presence of undissolved Cu-rich (Al-Cu-Mg-Si) and Fe-rich (Al-Fe-Si) 

phases. Next, Mg2Si precipitates can be identified by a reflexion at 2 = 40.21° [22]. 

However, the presence of Mg2Si peak is not observed in all ECAPed samples. Indeed, after 

the first pass, Mg2Si and Al8Fe2Si precipitates dissolved, due to the induced heavy 

strain, whereas the iron rich phase is still observed. Nevertheless, a small Mg2Si peak is still 

observed after four passes. Panigrahi et al. [23] reported that the formation of the Mg2Si phase 

after SPD could be explained by the accumulation of dislocations that may act as a short-

circuit path for solutes and atomic migration facilitating this precipitation. Furthermore, they 

added that the frictional heat induced on the sample caused a clustering of Mg and Si atoms 

with vacancies, leading to the formation of Mg2Si peak in the XRD pattern. The Cu-rich 

phase, in turn, was totally dissolved inside the Al matrix due to the induced strain in the 

ECAPed samples after the first five passes. After that, this phase was observed to be 

precipitated until 12 passes. On the other hand, the observed Bragg reflections were 

broadened after the ECAP process, which is related to the reduction of crystallite size and to 

the important lattice strain introduced by ECAP. Figure 3 shows typical broadening of the 

most intense (111)Al and (200)Al reflections with ECAP passes number. The variations of the 

crystallite size <D> and the lattice strain (ε) were determined from the XRD reflections 

profiles using the HW method (Fig. 4), and results are displayed in Fig. 5. An obvious 
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intensive grain refinement is clearly noticed after the ECAP process. In fact, the crystallite 

size already reached ∼ 45 nm after the first ECAP pass accompanied by a substantial increase 

of ε which can be related to the high amount of deformation introduced. From 2 to 6 passes, 

no systematic variation is observed and the average values for crystallite size and lattice 

strains are about 52 nm and 0.23 %, respectively.  Both curves have up-down variations of 

these parameters that could be related to the characteristic of the processing mechanics of the 

route Bc as well as the fact that SPD may lead to several modifications such as dislocation 

activities, vacancies, and atomic site interchange [24]. On the other hand, Reyes et al. [25] 

have shown a maximum of the lattice strain between passes 2 and 3 in the case of AA6061-

T6, and then remained steady after 5 passes. They interpreted this behavior by the optimum 

number of ECAP passes to achieve a stable configuration of dislocations. This behavior is 

quite similar with that obtained in the present results. It is of quite importance to mention that 

the average crystallite size after 12 passes is very similar to the one at 4th and subsequent 

passes, indicating that the crystallite size remains approximately constant after four passes. 

The lattice strain and theoretical strain induced during ECAP are plotted against the 

number of passes and given in Fig. 6. There is a large variation in lattice strain when 

compared to the theoretical one during ECAP. The above anomalous behavior can be 

explained by the high amount of severe plastic deformation introduced by ECAP, which 

enhances the grains boundaries (GBs) mobility and leads to the increase of the crystallite size. 

Increasing the number of passes up to five, the lattice strain decreases, which may be 

attributed to dynamic recovery activation. For a larger number of passes (up to 12 passes), 

lattice strain achieves a saturation value, which can be explained in terms of a balance 

between work hardening and softening by dynamic recovery.  

The examination of the diffraction patterns obtained after ECAP processing shows that 

peaks are shifted to high θ values (Fig. 3). Such behavior has been explained in the literature 
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by the creation of stacking faults by intensive deformation and variation of the lattice 

parameter during ECAP. The evolution of the lattice parameter against ECAP passes number 

is given in Fig. 7. After the three first passes, one can clearly notice an important decrease in 

the lattice parameter. The maximum variation was ~ -0.1% for the third ECAP pass, and 

thereafter, it slightly increased. However, it remained lower than that of the unpressed 

AA6060. Moreover, the obtained values are much higher than the lattice parameter for pure 

aluminum (a=4.0494 Å) [26]. This fact can testify the retention of a large quantity of Si and 

Mg atoms in the aluminum lattice after artificial aging. The decrease of the lattice parameter 

was probably due to the ECAP strain or to the partial precipitates dissolution due to the role of 

Si and Fe in decrease the lattice parameter in aluminum matrix [27, 28]. In addition, it has 

been shown that a reduction of grain size can also explain the decrease of lattice parameter 

[29, 30]. The slight increase of the lattice parameter up to 4 passes is followed by a decrease 

after 5 passes. After that, a steady state step of variation for extended ECAP passes until 12 

passes was noted. In conclusion, the lattice parameter did not change regularly during ECAP 

process. This behaviour of the cell parameter as a function of the number of passes arises 

mainly from two opposing alloying effects [31, 32]: i) the existence of vacancies and 

dissolution of the elements, having lower atomic radii (e.g. Fe (1.17 Å) and Si (1.26 Å)) than 

Al (1.43 Å) decrease the lattice parameter and ii) the dissolution of elements, having higher 

atomic radii (e.g. Mg (1.6 Å) element) than Al element, increases the lattice parameter. 

Besides, the total solubility of precipitate increases the lattice parameter [31]. 

Figure 8 shows the variation of the dislocation density (ρ) as a function of ECAP pass 

number. For severe plastic deformed samples, dislocation density, ρ, can be calculated in 

terms of the crystallite size, <D>, the root-square lattice strains, <2>1/2, and the Burger’s 

vector, b, according to equation (4) [33]: 
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                                                     (4)                                                                                                                                   

 

where b equal to a
√2

2
 for the FCC structure, being a the lattice parameter. 

It is clearly seen that ρD increases from about 0.01 × 1015 m-2 to 1.29×1015 m-2  the 

increase in ECAP from 0 to 2 passes, and then slightly decreases to about 1×1015 m-2 after 

five passes and the remains unchanged at a steady-state value. This decrease can be explained 

by partial dynamic recrystallization. Generally, in conventional polycrystalline materials, the 

GBs are thought to be barriers to the dislocations motion. Therefore, the slight decrease in the 

dislocations density within further ECAP passes indicates a softening of the GBs. When the 

GBs have become soft or relaxed, the level of the dislocations piled up near the GBs will 

decrease [24, 25]. The steady state value of dislocation can be explained by the structure 

refinement of the ECAP samples, in which the small crystallites become, themselves, a limit 

for the dislocation glide and, consequently, for further ECAP pressing, the level of dislocation 

density remains unchanged. 

3.2. Microstructure 

Figure 9 illustrates the AA6060 microstructural attitude, before and after ECAP 

process. The black and white lines from the EBSD maps indicate the location of high angle 

grain boundaries (HAGB) (θ ≥15°) and low angle grain boundaries (LAGB) (3°≤ θ ≤15°), 

respectively. The microstructure of the as-received material exhibits equiaxed grain 

morphology with an average grain size of ~52 µm (Fig. 9a). The morphology and the 

microstructure becomes elongated after the first ECAP pass (Fig. 9b), and the obtained 

average grain size is around 1.33 μm with a well-enhanced subgrain microstructure. As shown 

in Fig. 9(c-d), after two and three passes, the microstructure has apparently the same 

appearance as the banded structure after 1 pass. The widths of the bands in this condition were 

measured to give an average size of 1μm. After the fourth ECAP pass, it is obvious that the 

bD
D






2/12

32



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sub-grains within the coarse grains are generally either equiaxed or elongated with an average 

grain size of 0.68μm (Fig. 9e). After five, six and eight passes (Fig. 9(f-h)), a significant 

increase in the number of HAGB was revealed and the average grain sizes of 0.51, 0.52 and 

0.57 μm were obtained, respectively. Finally after twelve passes of ECAP, the microstructure 

consists of elongated grains together with smaller and equiaxed grains of 0.47μm (Fig. 9i). 

The distribution of the grain boundary misorientations is shown in Fig. 10 for the 

samples processed through 1, 2, 4, 5, 8 and 12 passes, respectively. After 1 pass of ECAP, 

there is a very large number of LAGB representing 69.8% of all boundaries in the sample 

(Fig. 10a). However, the fraction of HAGB increases with the increase in processing by 

ECAP reaching ~56 % after 5 passes (Fig. 10d) and ~61% after 12 passes (Fig. 10f). The 

relatively slow evolution to HGAB in the AA6060 can be related to the presence of solute 

atoms that impede HAGB dislocation movement and lead to a slower rate of recovery [34]. In 

the case of high purity Al processed by ECAP, Kawasaki et al. [35] have reported that the 

fraction of HAGB increases from 53 % after 8 passes to 74 % after 12 ECAP passes. 

Moreover, (Fig. 9(e,f)) show that small peaks appear in the high angle region (50-60º), which 

suggests that more LAGB have transformed into HAGB with the increase of the number of 

ECAP passes. 

Figure 11 depicts the dependence of the average grain size as function of the ECAP 

passes number. As already mentioned, the initial grain size of the undeformed sample was 

~52 µm. It is apparent that the grain size decreases rapidly to ~ 1.33 µm after a single pass. 

Subsequently, the results show a very sharp decrease in the grain size to ~ 0.5 µm after 5 

passes. Nevertheless, the grain size remains essentially constant up to 12 ECAP passes (Fig. 

11a). This behavior was very similar to that found in Kim et al. [36] results for an ECAPed 

AA6061 alloy at room temperature. Kawasaki et al. [35] have concluded that for ECAPed 

pure Al, there is no additional grain refinement with the increase in the number of passes 
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(~1.3 μm). Yet, Iwahashi et al. [37] have stated the addition of magnesium, as an alloying 

element, to an aluminum matrix decreases the grain size from 0.45 μm for Al-1%Mg (after 6 

passes) and ~0.27 μm for Al-3%Mg (after 8 passes). The occurrence of smaller grain sizes 

when alloying with magnesium is attributed to the decreasing rates of recovery in these solid 

solution alloys [37]. Concerning to the grain boundaries nature (Fig. 11b), it clearly seen that 

the processed material has a wide quantity of subgrains formed in the first pass, which 

decreases progressively with the increase of ECAP passes. In the initial stage of SPD 

processing, the necessary geometrical boundaries are formed to subdivide the coarse grains 

into cell blocks [38]. For that reason, in the first ECAP pass, a high fraction of LAGB was 

found, while in the following passes HAGB increases continuously. After 12 ECAP passes, 

the value of ~0.61 noted for the fraction of high-angle misorientations is similar to that found 

in an earlier report for Al–Mg alloy (~0.57) processed through 12 ECAP passes [34]. In fact, 

the proportion of HAGB after 12 passes is found to be similar to that of the undeformed 

material. .  

3.3. DSC analyses 

Figure 12 presents the recorded DSC runs of the Al–Mg–Si alloy as a function of 

ECAP passes number. The DSC curve for the undeformed sample shows three exothermic 

peaks (noted 1, 2 and 3) and one endothermic peak (noted 2’). As regards, the exothermic 

reaction peak 1 occurred from 185 to 230 °C and represents the formation of solute rich 

clusters. With respect to the broad exothermic peak 2 at about 325 °C, it can be  attributed to 

the β” precipitation. It has been reported that a second peak, usually located at about 330 °C 

and corresponding to β’ formation, might be superimposed to a shoulder of the former peak or 

even completely hidden by it [39]. More precisely, it has been mentioned that the sub-peak at 

325 °C is probably related to the Si-rich particles precipitation which act as motifs to form of 

the β’’ phase and the noticeable peak at 330 °C refers to the creation of both rod-shaped β’-
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phase and  large Si-rich precipitates [40,41]. A broad dissolution endothermic peak 2’ of the 

above phases appear at temperature range of 375-420 °C, whereas the third marked 

exothermic peak at 445 °C due to the creation of β-Mg2Si equilibrium phase. The ECAP 

processed alloy shows remarkable differences in the peaks position and shape. After the first 

ECAP pass, a new exothermic peak is observed at a temperature range of 240–270 °C 

following an endothermic peak in the range of 275–285 °C. This may be attributed to the 

formation and the dissolution of the preformed clusters/GP zones, respectively. Additionally, 

the above described broad peak attributed to the formation of β’’ and β’ phases appears now 

as a broader peak centered at 375 °C. Hence the broadening peak might be the result of the 

overlap between β′ peak and β peak, following an endothermic peak at around 475 °C related 

to the dissolution of the β-Mg2Si equilibrium phase. Furthermore, the careful observations of 

the curves corresponding to passes 2 to 12 of the ECAP processed samples suggest that heavy 

plastic deformation has separated the two originally superimposed peaks of β” and β’ phases. 

Stable β precipitates formed in the deformed alloy has shown to be notably anticipated (390–

425 °C) and of continuously reduced intensity regarding the undeformed sample. It is also 

interesting to note that the peak of ’ precipitates after eight ECAP passes is reduced. 

According to Matsuda et al. [42] the reduction of the ’ precipitates in alloys with the excess 

of Si, resulted from the creation of Si-rich metastable phases (type-B and type-A) as a 

competing phase to ’.Then, the possible depletion in Si from the matrix could also reduce the 

formation of -Mg2Si stable phase. When comparing the curve of the first ECAP pass to that 

of the other ECAP processed samples, it is evident that significant modifications occurred due 

to the severe plastic deformation experienced by the alloy. There is clear evidence that the 

broad peak at 375 °C is shifted to lower temperatures in the ECAP processed samples. The 

position of this β’ peak is shown in Fig. 13 as a function of the number ECAP passes. This 

peak temperature moves from 386 °C of the sample processed to a single ECAP pass, down to 
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351 °C for the sample processed to twelve ECAP passes. This unknown peak found in the 

deformed material during all ECAP passes can be a presentation of the recrystallisation 

temperature as suggested by Vedani et al. [16] results. 

4. Conclusion 

AA6060 was SPD-processed by ECAP at room temperature through a die of an inner 

angle of Φ=90º from 1 to 12 passes. The XRD analysis has shown an ultra-fine grain structure 

with an average crystallite size than 45 nm in ECAPed samples. Relatively, the increase in the 

number of ECAP passes promotes a decrease at the level of the lattice parameter because of 

the partial dissolution of the precipitates. Regarding the EBSD analysis, it revealed that the 

microstructure of the sample after a single ECAP pass consists mainly of elongated grains, in 

the association with subgrain formation. An heterogeneous ultra-fine grain structure with an 

average grain sizes of 0.57 and 0.47 µm was obtained after 8 and 12 passes, respectively. The 

DSC analysis has proven a shift in peak positions and differences in shapes regarding the 

undeformed alloy. The peaks for metastable ’’ and ’ precipitates were anticipated. The 

creation of  stable phase was undergone some partial suppression in the alloy processed to 1 

up 12 ECAP passes, probably because of the anticipated Si-rich particles precipitation. 
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Figures captions: 

Fig. 1  Schematic illustration showing the geometry of the ECAP die. 

Fig.  2  X-ray diffraction patterns of AA6060 alloy before (0 Passes) and after ECAP (1 Pass 

to 12 Passes). 

Fig. 3  Profile of the (111) peak and (200) peak Bragg reflections as a function of the number 

of passes. 

Fig. 4  Halder-Wagner plots for the AA6060 at different ECAP passes. 

Fig. 5  Evolutions of the crystallite sizes and the lattice strains as a function of the number of 

passes.  

Fig. 6  Variation of lattice strain and theoretical strain introduced by ECAP process as a 

function of number of passes. 

Fig. 7  Evolution of lattice parameter for AA6060 as a function of number of passes. 

Fig. 8  Evolution of the dislocation density, ρ as a function of number of passes. 

Fig. 9  Band contrast maps with LAGB (3° ≤ θ 15°) in white and HAGBs (θ>15º) in black 

lines of AA6060  (a) 0 pass, after (b) 1 pass, (c) 2passes,  (d) 3 passes,(e) 4 passes,                         

(f) 5 passes , (g) 6 passes , (h) 8 passes and (e) 12 passes . 

Fig. 10  Histograms of the misorientation angles in AA6060 (a) 1, (b) 2, (c) 4, (d) 5, (e) 8 and 

(f) 12 passes of ECAP. 

Fig. 11 Dependence of the (a) grain size and (b) the amount of HAGB and LAGB on the 

number of ECAP passes. 

Fig. 12 DSC curves of the Al–Mg–Si alloy as a function of ECAP passes (heating rate 20°C 

min–1). 

Fig. 13  Dependence of the peak ’on the number of ECAP passes. 

Tables captions: 

Table 1 Chemical composition of aluminum alloy (AA6060) wt.% 
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Table.1 

Element wt.% Element wt.% Element wt.% 

Al        98.76 Ca 0.0004 Zn 0.002 

V  0.008 Ti 0.011 Mg 0.454 

Sr 0.0002 Sn 0.002 Mn 0.024 

Sb 0.0773 Pb 0.004 Cu 0.001 

P 0.0010 Cr 0.001 Fe 0.205 

Na 0.0008 Ni 0.001 Si 0.449 
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