337 research outputs found

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond

    Get PDF
    Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes

    WACCM-D Whole Atmosphere Community Climate Model with D-region ion chemistry

    Get PDF
    Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during strong events can decrease ozone by tens of percent. However, the standard ion chemistry parameterization used in atmospheric models neglects the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. We consider realistic ionization scenarios and compare the WACCM-D results to those from the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry. We show that WACCM-D produces well the main characteristics of the D-region ionosphere, as well as the overall proportion of important ion groups, in agreement with SIC. Comparison of ion concentrations shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70–90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some groups but is still within tens of percent. Based on the good agreement overall and the fact that part of the differences are caused by different model setups, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and is therefore expected to improve EPP modeling considerably. These improvements are demonstrated in a companion paper by Andersson et al

    Multi-photon and electron impact ionisation studies of reactivity in adenine–water clusters

    Get PDF
    Multi-photon ionisation (MPI) and electron impact ionisation (EII) mass spectrometry experiments have been carried out to probe unimolecular and intermolecular reactivities in hydrated adenine clusters. The effects of clustering with water on fragment ion production from adenine have been studied for the first time. While the observation of NH4+ fragments indicated the dissociation of protonated adenine, the dominant hydration effects were enhanced C4H4N4+ production and the suppression of dissociative ionisation pathways with high activation energies. These observations can be attributed to energy removal from the excited adenine radical cation via cluster dissociation. Comparisons of MPI and EII measurements provided the first experimental evidence supporting hypoxanthine formation in adenine–water clusters via theoretically predicted barrierless deamination reactions in closed shell complexes
    corecore