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Unfolding and Folding of the Three-Helix Bundle Protein KIX
in the Absence of Solvent
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Abstract. Electron capture dissociation was used to probe the structure, unfolding,
and folding of KIX ions in the gas phase. At energies for vibrational activation that
were sufficiently high to cause loss of small molecules such as NH3 and H2O by
breaking of covalent bonds in about 5% of the KIX (M + nH)n+ ions with n = 7–9, only
partial unfolding was observed, consistent with our previous hypothesis that salt
bridges play an important role in stabilizing the native solution fold after transfer into
the gas phase. Folding of the partially unfolded ions on a timescale of up to 10 s was
observed only for (M + nH)n+ ionswith n = 9, but not n = 7 and n = 8, whichwe attribute
to differences in the distribution of charges within the (M + nH)n+ ions.
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Introduction

Native mass spectrometry (MS) has, over the past 25 years,
developed from interpreting mass spectra from

electrospray ionization (ESI) of different solutions to ap-
proaches by which the dissociation of biomolecules such as
proteins and nucleic acids and their noncovalent complexes is
studied, or their rotationally averaged collision cross section is
probed by ion mobility MS [1–29]. Obtaining information of
relevance to biological problems by native ESI MS relies, as a
matter of course, on the preservation of solution structure after
transfer into the gas phase, where it can be probed by a number
of techniques, including electron capture dissociation (ECD)
[30, 31]. However, the use of native ESI Bis not without
complications^ [9], not least because the stability of a solution
structure in the gas phase can presently not be reliably predict-
ed. Nevertheless, some progress has been made in understand-
ing the determinants of peptide and protein structure and sta-
bility in a gaseous environment [32–47].

We have previously postulated that salt bridges, either
formed in the gas phase or already present in solution [48],
can contribute substantially to the stabilization of the solution
structure of a protein after transfer into the gas phase [33]. In
support of this hypothesis, calculations suggest that in the
absence of solvent, the strength of an overall neutral salt bridge

can be comparable to the strength of a covalent bond [49, 50].
Ionic hydrogen bonds [48] between protonated basic or
deprotonated acidic sites and neutral molecules have strengths
of typically 21–146 kJ/mol, which is up to a third of the
strength of covalent bonds [51]. Neutral hydrogen bonds be-
tween backbone amides constitute the basis of protein second-
ary structure (i.e., α-helices and β-sheets). The N-H⋅⋅⋅O=C
hydrogen bond stability in the gas phase can be estimated to
be close to the dimerization energy of two N-methylacetamide
molecules of ~28 kJ/mol [52]. Although in the gas phase
neutral hydrogen bonds are substantially weaker than both
ionic hydrogen bonds and salt bridges, they are typically more
numerous in proteins with a high content of secondary struc-
ture. Finally, ion–dipole interactions, especially those that in-
volve helix dipole moments, can stabilize protein ion gas phase
structure [33]. In the absence of sufficient stabilization by
electrostatic interactions, desolvation can cause spontaneous
unfolding of protein ions [53–57], which can subsequently fold
into more stable gaseous ion structures [32]. However, only a
small number of experimental studies [34, 58–61] have so far
focused on peptide or protein folding in the gas phase, even
though all possible structural transitions can affect data from
native mass spectrometry experiments. We have recently re-
ported that gaseous cytochrome c ions from horse and tuna
heart, the fold of which is virtually identical in solution, show
vastly dissimilar folding behavior, and found evidence that the
formation of salt bridges is a major driving force for protein
folding in the gas phase [34].Correspondence to: Kathrin Breuker; e-mail: kathrin.breuker@uibk.ac.at
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Here we investigate the unfolding and folding of the three-
helix bundle protein KIX, for which ECD data indicated sub-
stantial preservation of the native solution structure in the
(M + 7H)7+ ions, on a timescale of at least 4 s after
transfer into the gas phase, even after vibrational ion
activation by 28 eV collisions with argon gas [33]. In
this study, we subjected KIX (M+ nH)n+ ions with n = 7–9 to
higher energy collisions that were sufficiently high to
break covalent bonds in ~5% of the ion populations,
and discuss the observed partial unfolding in terms of
electrostatic interactions. Folding data for the partially
unfolded KIX ions is complemented with data for a
KIX peptide, which are discussed in the context of
Coulombic repulsion and possible interactions that drive
the folding process.

Experimental
KIX protein (91 residues, GSHMGVRKGW HEHVTQDLRS
HLVHKLVQAI FPTPDPAALK DRRMENLVAY
AKKVEGDMYE SANSRDEYYH LLAEKIYKIQ
KELEEKRRSR L) was expressed with an N-terminal
hexahistidine (His6) tag in Escherichia coli cells and purified
by Ni-affinity and size-exclusion chromatography (SEC); after
removal of the His6 tag by incubation with thrombin and
another purification step by SEC, KIX was desalted using
centrifugal concentrators as described previously [33, 62, 63].
H2O was purified to 18 MΩ⋅cm at room temperature using a
Milli-Q system (Millipore, Austria), CH3OH (Acros, Vienna,
Austria) was HPLC-grade, and CH3COOH, CH3COONH4

(>99.0%, Na ≤5 mg/kg, K ≤5 mg/kg), and ethylenediamine
diacetate (EDDA) were purchased from Sigma-Aldrich
(Vienna, Austria). The KIX peptide comprising residues
36–91, KIX(36–91), was produced by acid hydrolysis
of the desalted protein (9 μM in 97:3 H2O/CH3COOH,
pH 2) at 99 °C for 2 h. The reaction was quenched by dilution
to 2 mL in 80:20 H2O:CH3OH with 1 mM EDDA at room
temperature. Under these conditions, >95% of the products
were peptide KIX(36–91) and its complement comprising res-
idues 1–35 from hydrolysis of the backbone amide bond be-
tween D35 and P36. Repetitive cycles of concentration using
Vivaspin centrifugal concentrators (2 mL, molecular weight
cut-off 2000; Sartorius, Austria) to ~200 μL and dilution in
80:20 H2O:CH3OH were performed until pH 4 was reached.
As noted in our previous study [33], KIX tends to aggregate in
unbuffered, aqueous solutions at pH 4.5–5.5, for which reason
protein and peptide (M + nH)n+ ions were electrosprayed from
1–5 μM solutions in 80:20 H2O/CH3OH at pH 4 (adjusted by
addition of acetic acid) with 1 mM EDDA [64], except for the
folding experiments of KIX (M + 9H)9+ ions for which instead
of EDDA, 500 μM ammonium acetate was used. The latter are
chemically similar, organic salts comprising the same anion,
acetate, which should not have significantly different effects on
protein structure at the concentrations used [65, 66]. However,
the use of EDDA instead of ammonium acetate produced

higher yields of (M + 7H)7+ and (M + 8H)8+ ions [64].
Experiments were performed on a 7 T Fourier transform ion
cyclotron resonance (FT-ICR) mass spectrometer (Bruker,
Austria) equipped with an ESI source and a hollow dispenser
cathode for ECD. For unfolding, protein (M + nH)n+ ions were
vibrationally activated by energetic collisions in the ESI source
region by application of a skimmer potential of 120 V for n = 7
and 80 V for n = 8 (5 V was used for n = 9), and by collisions
with Ar gas (~10−3 mbar) at the head of the second hexapole at
19, 16, and 10 V potential for n = 7, 8, and 9, corresponding to
133, 128, and 90 eV laboratory frame energy, respectively.
Unfolding of the (M + 6H)6+ ions of KIX(36–91) utilized
100 V skimmer and 15 V hexapole potentials. All potentials
were optimized for maximum vibrational activation and struc-
tural annihilation without significant depletion of the ion pop-
ulation to subsequently undergo folding, which was realized by
limiting the loss of small molecules (NH3, H2O etc.) from (M +
nH)n+ ions to ~5%. Ions were accumulated in the first hexapole
for <1 s, isolated by m/z in the quadrupole, accumulated in the
second hexapole for <1 s, and transferred into the trapped ICR
cell for ECD and ion detection; for a schematic of the experi-
mental setup, see reference [67]. Folding was monitored by
varying the delay between ion accumulation in the second
hexapole and transfer (~2 ms) into the ICR cell from 0–10 s
in 1 s intervals for KIX and 0–4 s in 0.5 s intervals for KIX(36–
91). Five hundred scans were added for each spectrum. Site-
specific fragment yields were calculated as %-values relative to
all ECD products, considering that backbone cleavage gives a
pair of complementary c and z• ions (a•, y ions were not
included in the analysis because of their marginal abundance
totaling to <1%): 100% = 0.5·[c] + 0.5·[z•] + [reduced molec-
ular ions and loss of small neutral species from the latter].
Possible salt bridges and ionic hydrogen bonds in Figure 1b
were identified by inspection of the 20 KIX structures in pdb
entry 2AGH using the PyMOLmolecular viewer (Schrödinger,
LLC, NY, USA). A salt bridge was assigned when non-
backbone nitrogen atoms of a basic (N-terminus, H, K, R)
oxygen atoms of an acidic (C-terminus, D, E) residue were
within 4 Å from each other, or when sidechain bonds could be
rotated such that this distance constraint was reached.
Similarly, ionic hydrogen bonds between basic or acidic and
polar sidechains were assigned for heteroatom (N, O) distances
<3 Å.

Results and Discussion
The 20 KIX structures in pdb entry 2AGH, calculated on the
basis of distance restraints from nuclear magnetic resonance
(NMR) experiments in the Wright group [68], show a highly
uniform backbone fold especially in the α-helical regions (α1:
residues 16-30, α2: 42-61, α3: 65–88) but substantial variations
in sidechain orientation of basic (H, K, R, N-terminus) and
acidic (D, E, C-terminus) residues (Figure 1a). Other KIX
structures (1KDX, 2LXS, 2LXT, 2LQH, 2LQI, 2KWF) exhibit
essentially the same backbone fold and similarly large
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variations in sidechain orientation, notwithstanding the fact that
all corresponding NMR experiments were conducted in the
presence of different peptide ligands and under different solu-
tion conditions, i.e., different ionic strength (0–50 mM NaCl),
buffers (Tris(hydroxymethyl)aminomethane acetate, potassi-
um phosphate, 2-(N-morpholino)ethanesulfonic acid) at differ-
ent concentrations (20–50 mM), and different pH values (5.5–
6.0). Apparently, the conformational flexibility of KIX's basic
and acidic sidechains is generally high in solution, although
some electrostatic interactions such as the salt bridge between
R19 and E55 (Figure 1a) were found in most of the above
NMR structures.

We have previously proposed that the transfer of proteins
into the gas phase by electrospray ionization causes the forma-
tion of salt bridges and ionic hydrogen bonds on the protein
surface, by which a native fold can be stabilized during and
after the phase transition [32, 48]. The high stability of KIX
(M + 7H)7+ ions in the complete absence of solvent, on a
timescale of up to 4 s [33], suggests that a sufficiently large
number of electrostatic interactions have formed during ESI
that, together with those already present in solution, prevent
the native fold from disintegration in the gas phase. All salt
bridges (SB, purple lines) and ionic hydrogen bonds (IHB,
green lines) that are present in solution or can potentially form

Figure 1. (a) Overlay of 20 KIX structures (pdb entry 2AGH) with basic (N-terminus, H, K, R) and acidic (C-terminus, D, E) residues
shown as sticks (nitrogen: blue, oxygen: red); (b) possible salt bridges (SB, purple lines) and ionic hydrogen bonds (IHB, green lines);
(c)–(e) yields of c (black bars) and z• (open bars) fragments from ECD of (M + nH)n+ ions of KIX for n = 7–9 as indicated, versus
backbone cleavage site; datawithout collisional activation (upper traces, 0 eV) are from reference [33] and helix regions are shaded in
gray; SB and IHB that were potentially preserved in each experiment are indicated
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during ESI while retaining the backbone fold of the KIX
structure 2AGH are illustrated in Figure 1b.

Comparing the possible salt bridges and ionic hydrogen
bonds (Figure 1b) to the site-specific yields of c (black bars)
and z• (open bars) fragments from ECD of KIX (M + 7H)7+

ions (Figure 1c, 0 eV) reveals that the possible interactions of
R7, K8, H11, and H13 (SB: R7/E12, R7/E60, K8/E60, H11/
E60, H13/E12, IHB: R7/N63, K8/W10) were, at least in a
significant fraction of the ions, not present as this would have
prevented separation of fragments from cleavage at sites 7, 8,
and 12 [30]. However, after vibrational activation for unfolding
of the KIX (M + 7H)7+ ions (Figure 1c, 133 eV), the yield of
separated c and z• fragments from cleavage at sites 7 and 12
increased substantially, and fragments from sites 10 and 11
appeared, consistent with an increase in the fraction of ions in
which the interactions of R7, K8, H11, and H13 were broken.
Moreover, separated fragments were observed from cleavage
in the region of helix α1 (sites 15, 16, 20, 21, 25, 28), indicating
loss of its secondary structure along with breaking of any
interactions between helices α1 and α2 (SB: R19/E55, IHB:
R19/Y59). The ECD patterns of the KIX (M + 8H)8+ ions with
and without collisional activation are very similar (Figure 1d),
although breaking of SB and IHB interactions between resi-
dues 42, 43, 45, and 46 is evident from the ~4-fold increase in
yield of fragments from sites 42, 43, and 45. However, colli-
sional activation had a far stronger effect on the structure of the
KIX (M + 9H)9+ ions, the fragmentation pattern of which at
0 eV (Figure 1e) was very similar to that of the (M + 8H)8+ ions
at 128 eV. Specifically, the data indicate nearly full unraveling
of helix α2 along with breaking of the IHB between helices α2
and α3 (Y50/K75, E55/Y68), and significant loss of residual
structure in the region comprising residues 6–57 (note that
ECD does not produce c and z• ions from cleavage at the N-
terminal side of proline residues, which applies to sites 31, 33,
and 35).

In summary, the above data suggest that unfolding of the
three-helix bundle structure of the KIX (M + 7H)7+ ions by
collisional activation, at energies that are sufficiently high to
cause loss of small molecules such as NH3 and H2O by break-
ing of covalent bonds in about 5% of the ions, is limited to the
separation and disruption of helix α1 while retaining the higher
order structure of helices α2 and α3. By contrast, helix α1 is
already unraveled and separated from helices α2 and α3 in a
significant fraction of the (M + 8H)8+ ions produced by ESI,
along with uncoiling of the first turn of helix α2, and collisional
activation merely increases this fraction without causing addi-
tional structural changes. The structure of the (M + 9H)9+ ions
from ESI is very similar to that of the partially unfolded (M +
8H)8+ ions, but after collisional activation, substantial loss of
tertiary and secondary structure is observed, even though the
latter is largely retained in helix α3.

The extent of unfolding after collisional activation is also
reflected in the total yield of separated c and z• fragments,
which increased with increasing (M + nH)n+ ion charge from
~5% for n = 7 to ~7% for n = 8 to ~26% for n = 9 (Figure 2a).
Surprisingly, subsequent folding was observed only for the

(M + 9H)9+ ions, for which the total yield of separated c and
z• fragments decreased by ~6% to ~20% within 10 s, with an
overall exponential folding rate of 0.282 ± 0.134 s−1 (Figure 2a,
all sites). Within error limits (calculated as described in ref
[34]), rates for individual sites were similar, but for some sites
(e.g., 20, 42, 45, 46), errors exceeded rates (Figure 2b, open
squares), indicating the possibility of no or far slower folding.
Because these are scattered between sites indicating folding
(Figure 2b, filled squares), it remains unclear if folding of the
KIX (M + 9H)9+ ions is a global or a local process [34]. Even
so, the overall folding rate of KIX (M + 9H)9+ ions is signif-
icantly higher than that of cytochrome c from tuna heart
(0.067 ± 0.054 s−1), and comparable to the initial (up to
~4 s) folding rate of cytochrome c from horse heart [34].
These differences in folding rate roughly correlate with the
proteins’ grand average of hydropathy (GRAVY) values [69],
calculated by adding the hydropathy values of all amino acid
residues and dividing by the number of residues in the se-
quence (see, for example, http://web.expasy.org/protparam/),
that are similar for KIX (–0.901) and cytochrome c from horse
heart (–0.902) but significantly smaller for cytochrome c from
tuna heart (–0.727). This finding supports our previous
hypotheses that the formation of electrostatic interactions
such as salt bridges and hydrogen bonds is a major driving
force for protein folding in the gas phase, and that more
hydrophilic proteins generally fold faster [34]. Moreover, the
similarity of site-specific rates (Figure 2b) suggests folding of
the KIX (M + 9H)9+ ions into structures different from those
without collisional activation (Figure 1e), as proposed
previously [32].

Can the experimental observation that the KIX (M + nH)n+

ions with n = 7 and n = 8 did not fold on the timescale of the
experiment, whereas folding was evident for those with n = 9,
be attributed to Coulombic repulsion, despite the fact that
increasing ion net charge should generally oppose protein
folding? More precisely, could the net charge density and thus
Coulombic repulsion in the unfolded regions of the (M + 7H)7+

and (M + 8H)8+ ions be higher than in the (M + 9H)9+ ions? The
average charge of c and z• ions from ECD of (M + nH)n+ ions
illustrated in Figure 3 immediately reveals that this is not the
case, as the net charge of residues 1– 22 (cleavage site 22) is the
same for (M + 7H)7+ and (M + 8H)8+ ions, and the net charge of
residues 1–46 (cleavage site 46) is the same for (M + 8H)8+ and
(M + 9H)9+ ions. Moreover, the average fragment charge
values were similar with and without collisional activation
prior to ECD, suggesting that unfolding of the KIX (M +
nH)n+ ions by vibrational activation at the energies used here
did not result in significant intramolecular proton mobilization
[70].

However, the data in Figure 3 show that charge transitions
of the (M + 9H)9+ ions were different from those of the (M +
7H)7+ and (M + 8H)8+ ions. For example, the transition from
one to two charges for c ions (left axis, the corresponding
transition for complementary z• ions is from four to five charges
on the right axis) is around site 16 for (M + 7H)7+ ions but
around site 13 for (M + 9H)9+ ions, and that from three to four
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charges is around site 45 for (M + 8H)8+ ions but around site 38
for (M + 9H)9+ ions. It is generally difficult to pinpoint the
exact location of all charged sites in protein (M + nH)n+ ions

from ECD data [30, 71] as capture of an electron neutralizes a
positive charge, and because the presence of zwitterionic mo-
tifs that comprise both positively and negatively charged sites

Figure 2. (a) Yield of separated c and z• fragments from ECD of (M + nH)n+ ions of KIX versus folding delay for n = 7 (triangles), n = 8
(diamonds), and n = 9 (circles) and sites as indicated; (b) exponential folding rates versus cleavage site, data points for which errors
exceeded rates are highlighted as open symbols

Figure 3. Average charge n of c (left axis) and complementary z• (right axis) fragments from ECD of (M + nH)n+ ions of KIX for (a) n =
7, (b) n = 8, and (c) n = 9, without and with 133, 128, and 90 eV laboratory frame energies for collisional activation prior to ECD,
respectively, versus cleavage site. Gray bars indicate locations of basic residues, and solid lines are meant to guide the eye
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cannot be excluded. Moreover, even in unfolded structures,
protons can be shared between adjacent residues in homodi-
meric (e.g., K⋅⋅⋅H+⋅⋅⋅K) or heterodimeric (e.g., K⋅⋅⋅H+⋅⋅⋅Q)
ionic hydrogen bonds [51]. Nevertheless, the different charge
transitions in Figure 3 clearly imply that charges are distributed
differently in the 1–46 region for n = 7, 8 and n = 9. Because
this is the only difference between the (M + 9H)9+ ions and the
(M+ 7H)7+ and (M+ 8H)8+ ions in evidence, the propensity for
folding must be related to the distribution of charges within the
(M + nH)n+ ions.

To further test the hypothesis that the distribution of charges
affects the propensity for folding, we have studied a peptide
comprising residues 36–91 of KIX, termed KIX(36–91). ECD
of collisionally activated (90 eV) KIX(36–91) (M + 6H)6+ ions
gave a fragmentation pattern (Figure 4a) similar to that of KIX
(M + 9H)9+ ions at 90 eV (Figure 1e), indicating that the
secondary structure of helix α3 was largely retained in the
peptide as well.Moreover, charge transitions occurred at nearly
the same sites, around 38, 51, 68, and 90 for KIX, and 37, 50,
66, and 90 for KIX(36–91), as indicated by the average frag-
ment charge values in Figure 4b. The overall folding rate of
KIX(36–91) (M + 6H)6+ ions is 2.194 ± 0.930 s−1, and higher
than that of KIX (M + 9H)9+ ions (0.282 ± 0.134 s−1) by a
factor of ~8, which can be attributed to the more negative
GRAVY value of KIX(36–91) of –1.118 and its shorter amino
acid sequence that allows faster sampling of conformational
space. Likewise, rates for individual sites are generally higher
for KIX(36–91) (Figure 4d). Unlike for KIX, however,
KIX(36–91) folding can unambiguously be classified as a local
process driven by interactions between residues neighboring in
sequence as sites indicating folding are separated by sites that
show no change or even a slight increase in ECD fragment
yield (Figure 4c), similar to the folding of cytochromes c [34].
Importantly, the fact that KIX(36–91) (M + 6H)6+ and KIX (M
+ 9H)9+ ions with similar charge distributions both show fold-
ing, whereas KIX (M + 7H)7+ and (M + 8H)8+ ions with
different charge distributions do not, confirm our hypothesis
that the distribution of charges within (M + nH)n+ ions is key to
a gaseous ion's propensity for folding.

Not only do the KIX(36–91) (M + 6H)6+ and KIX (M +
9H)9+ ions fold at different rates, they also fold in different
ways. Most strikingly, the region corresponding to cleavage
sites 53–57 of KIX(36–91) shows no evidence for folding,
whereas the same region of KIX does (Figure 4c, d). This
difference in folding behavior can be attributed to the formation
of electrostatic interactions, i.e., salt bridges and ionic or neutral
hydrogen bonds [34] between residues in region 1–35 and 36–
91 in the folding process of KIX that are not possible for
KIX(36–91). For example, the formation of a salt bridge be-
tween D35 and R43 of KIX could explain the decrease in ECD
fragment yield at sites 38, 40, 41, and 42 as an indicator for
folding, and at the same time account for the lack of folding at
these sites for KIX(36–91) that does not comprise D35.
However, the number of salt bridges that could potentially
form during folding of KIX, 360, and KIX(36–91), 180, is
overall high (Figure 5), except in the regions corresponding to

cleavage sites 1–10 and 17–33 (residues 1–11 and 17–34), for
which KIX folding rates were generally exceeded by errors
(Figure 2b) or could not be determined due to low ECD
fragment ion abundances (Figure 1e). Because of the high
number of potential interactions, it is difficult to rationalize
the observed differences in folding behavior on the basis of
specific interactions, such as salt bridges (Figure 5), between
residues neighboring in sequence [34]. An additional compli-
cation in assigning potential interaction partners is the fact that
neither KIX (M + 9H)9+ nor KIX(36–91) (M + 6H)6+ ions were
fully unfolded after collisional activation (Figures 1e and 4a),

Figure 4. (a) yields of c (black bars) and z• (open bars) frag-
ments from ECDof (M + 6H)6+ ions of KIX(36–91) after unfolding
by collisional activation (90 eV), and (b) average charge n of c
(left axis) and complementary z• (right axis) fragments, versus
cleavage site with symbols as in Figure 3; (c) yield of c and z•

fragments versus folding delay for sites as indicated (no
change: sites 36, 37, 38, 40, 41, 42, 55, 57, 90; folding: sites
39, 43, 44, 45, 46, 47, 48, 52, 70, 87, 88, 89; unfolding: sites 53,
54, 56); (d) exponential folding rates versus cleavage site for
KIX(36–91) (M + 6H)6+ ions (circles) and KIX (M + 9H)9+ ions
(triangles)
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which opens the possibility that interactions are formed be-
tween residues that are farther apart from each other in se-
quence, but close to each other in space.

Finally, we want to address the issue of disrupting and
forming salt bridges in gaseous protein ions. Assuming, for
example, that the native salt bridge between R19 and E55 is
preserved in the (M + 7H)7+ ions of KIX, and broken by
collisional activation, as indicated by the data in Figure 1c,
does the latter involve charge separation? In other words, does
breaking of the R19/E55 salt bridge produce protonated R19
and deprotonated E55 sidechains, or uncharged R19 and E55
sidechains? The proton affinity (PA) of guanidine as a
sidechain model for arginine is 986 kJ/mol, and that of arginine
is 1051 kJ/mol [72], with the 65 kJ/mol difference resulting
from stabilization by intramolecular ionic hydrogen bonding in
protonated arginine; the PA of propionate as a sidechain model
for glutamate is 1454 kJ/mol [72]. PA values of pentane-1-
amine and 4-methyl-1H-imidazole as sidechain models for
lysine and histidine are somewhat lower than that of guanidine,
953 and 924 kJ/mol, respectively, and that of acetate as a
sidechain model for aspartate is 1453 kJ/mol [72]. According
to these PA values, proton transfer from a protonated basic
sidechain to a deprotonated acidic sidechain is exothermic by
467–530 kJ/mol, which suggests that separation of residues in a
salt bridge structure produces neutral sidechains unless the
barrier between ionic (protonated basic sidechain and
deprotonated acidic sidechain) and neutral forms (both
sidechains uncharged) is sufficiently high to prevent proton
transfer. Strittmatter and Williams have studied the energetics
of heterodimers, AHB, consisting of trifluoroacetic acid, AH,

and strong organic bases, B, and found by calculation that
while the stability of the neutral (AH⋅B) and ion (A−⋅BH+)
forms depends on the proton affinity of the base, barriers
between the two forms were generally small [50]. Moreover,
separation of the neutral pair AH⋅B into AH and B required
only 82–99 kJ/mol, whereas separation of the ion pair A−⋅BH+

into A− and BH+ required substantially more energy, 354–404
kJ/mol [50]. Activation barriers for interconversion of zwitter-
ionic and non-zwitterionic structures of sodiated octaglycine,
(GGGGGGGG + Na)+, were also small, between –0.25 and
1.25 kJ/mol [73]. It is thus reasonable to assume that by
incrementally increasing an ion’s vibrational energy in low-
energy collisional activation, a proton in a salt bridge structure
will generally be transferred from the protonated basic
sidechain to the deprotonated acidic sidechain before separa-
tion of the residues.

However, in compact protein ion structures like the KIX
(M + nH)n+ ions investigated here, residues that form a salt
bridge can at the same time be involved in additional electro-
static interactions with other residues that could substantially
affect their proton affinity and the strength of a salt bridge.
Previous studies have demonstrated the effect of inter- and
intramolecular ionic and neutral hydrogen bonding on the
proton affinity and related gas-phase basicity of neutral [74–
77] and deprotonated [78–81] sites in amino acids and small
peptides. In the native KIX structure, residue E55 not only
forms a salt bridge with R19 but also an ionic hydrogen bond
with Y68, and is in sufficiently close proximity to K52 to form
yet another salt bridge (Figure 1b). If multiple electrostatic
interactions can delocalize the negative charge of aspartate or
glutamate residues, and thereby reduce their proton affinity to
the extent that a positively charged, basic sidechain can be
separated without causing proton transfer, remains an open
question. Even so, the charge transition for the (M + 7H)7+

ions around site 16 (Figure 3a), near R19, is consistent with
breaking of the R19/E55 salt bridge while retaining the positive
and negative charge of R19 and E55, respectively; separation
of protonated instead of uncharged R19 should also reduce the
overall Coulombic repulsion in the partially unfolded ions.
Regardless of whether or not proton transfer occurs upon
breaking of salt bridges, the association of both neutral (e.g.,
R and E) and charged (e.g., protonated R and deprotonated E)
pairs of basic and acidic sidechains can result in the formation
of salt bridges as the barrier between zwitterionic (ion pair) and
non-zwitterionic (neutral pair) structures is generally small
[50, 73].

Conclusion
We have studied the unfolding and folding of KIX (M + nH)n+

ions from native ESI by electron capture dissociation.
Vibrational ion activation at energies that were sufficiently
high to cause loss of small molecules such as NH3 and H2O
by breaking of covalent bonds in about 5% of the KIX ions
with n = 7–9 was insufficient for full unfolding, but high

Figure 5. Potential salt bridges (not considering any structural
restraints) between basic (H, K, R, N-terminus) and acidic (D, E,
C-terminus) residues of KIX shown as cross peaks; gray square
highlights region for KIX(36–91)
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enough to break the native R19/E55 salt bridge in the (M +
7H)7+ ions. Apparently, the strength of a salt bridge between a
protonated basic and a deprotonated acidic sidechain in a
gaseous protein ion is similar to the strength of a covalent
bond. Specifically, the native R19/E55 salt bridge provides
strong stabilization of KIX’s tertiary structure after transfer into
the gas phase by conjoining helices α1 and α2. In all KIX ions
studied here, helix stability against vibrational activation in-
creased from α1 to α2 to α3, which is the same order of stability
as that in solution [62] and that found for nonactivated (M +
nH)n+ ions with n = 7–16 [33]. This order of stability in the gas
phase can be attributed to the number of stabilizing electrostatic
interactions that increases from α1 to α2 to α3.

Folding of the KIX (M + nH)n+ ions on a 10 s timescale was
observed only for n = 9, but not for n = 7 and n = 8, in contrast
to what would be anticipated from Coulombic repulsion.
Instead, the data for KIX and KIX(36–91) ions suggest that
the propensity for protein folding in the gas phase is related to
the distribution of charges within the (M + nH)n+ ions.
Moreover, folding rates of different proteins showed a qualita-
tive correlation with grand average of hydropathy (GRAVY)
values, consistent with our previous hypothesis that the forma-
tion of electrostatic interactions, especially salt bridges, is a
major driving force for protein folding in the gas phase [34].
Our finding that the propensity for folding is determined by the
intramolecular distribution of charges instead of ion net charge
challenges the widespread assumption that protein unfolding in
the gas phase is generally caused by Coulombic repulsion, in
agreement with a previous study of multiply protonated
polypropylenamine dendrimers [82].
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