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ABSTRACT 

Quantum calculations find that neutral methylamines and thioethers form complexes, with N-

methylacetamide (NMA) as proton acceptor, with binding energies of 2-5 kcal/mol.  This interaction is 

magnified by a factor of 4-9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3
+ 

group is added to the proton donor.  Complexes prefer trifurcated arrangements wherein three separate 

methyl groups donate a proton to the O acceptor.  Binding energies lessen when the systems are 

immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in 

water.  The binding energy is reduced when the methyl groups are replaced by longer alkyl chains.  

The proton acceptor prefers to associate with those CH groups which are as close as possible to the 

S/N center of formal positive charge.  A single linear CH··O H-bond is less favorable than is 

trifurcation with three separate methyl groups.  A trifurcated arrangement with three H atoms of the 

same methyl group is even less favorable.  Various means of analysis, including NBO, SAPT, NMR, 

and electron density shifts, all identify the +CH··O interaction as a true H-bond. 
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INTRODUCTION 

Of all the noncovalent forces that occur between separate molecules, or between various segments 

of the same molecule, H-bonding has arguably been the most intensively studied over the years.  

Decades of research have provided a wealth of information 1-4 about the underlying nature of the 

attraction, and of some of the accompanying phenomena.  For example, the formation of a A-H···D H-

bond typically results in a small elongation of the A-H covalent bond, with an associated red shift of its 

stretching frequency. 

Recent years have witnessed a broadening of the concept of H-bonding in a number of directions 5, 

6.  For example, the electron donor D can be a H atom with a partial negative charge in what is usually 

called a dihydrogen bond 7-11.  Or the electrons can come not from a D lone pair, but rather from a π 

bond 7, 12-15. Another extension of the H-bond concept arises from the notion that the proton donor A 

atom can be less electronegative than the usual O, N, or F atoms.  In addition to S or Cl 16-18, C has also 

been shown 19-28 to participate in H-bonds as the proton donor.  In an interesting twist, certain CH··O 

H-bonds violate the usual rule of a red shifted C-H stretching frequency, with this mode shifting 

instead to higher frequencies 29-36. 

Most of the extensions mentioned above are weaker than standard H-bonds, sometimes pushing the 

boundaries of the lower limit of strength.  On the other end of the spectrum are very strong H-bonds, in 

which one of the two subunits carries an electric charge 37-40.  The neutral water dimer, for example, is 

bound by some 5 kcal/mol, but if one of the two water molecules is replaced by either OH- or H3O
+, 

the interaction energy climbs 41-47 by a factor of 5-8.  It is natural to wonder then whether such a 

charge-enhanced interaction energy can transform a weak H-bond such as CH··O into a much stronger 

one.  And indeed, there is some evidence in the literature that this might be the case.  Placing a 

negative charge on the proton acceptor 48-56 seems to cause a substantial strengthening of the attractive 

force within the dimer. 

Likewise, adding a positive charge to the proton donor appears to have a comparable strengthening 

effect upon the H-bond.  This phenomenon finds especial importance in the realm of biomolecular 

structure and function.  As one example, the CH of a protonated Lys has been observed to attract a Trp 

sidechain 57.  Upon acquiring some charge from a nearby metal cation, the imidazole sidechain of a His 

residue forms CH··O H-bonds with heightened frequency of occurrence, as judged by analysis of the 

protein data bank 58. The large number of CH··O H-bonds around the Cu coordination site of 
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amicyanin 59 suggested that charge imparted by metal-coordination applies more generally to other CH 

donors as well. 

One interesting case study arises in the activity of a particular class of enzymes.  The Trievel 

group’s delving into the mechanism of lysine methyltransferases and demethylases 60-64 has revealed 

strong evidence that one or more CH··O H-bonds involving a cationic proton donor play an important 

role in their functioning.  These donors involve either S (as in S-adenosyl-L-methionine, i.e. AdoMet) 

or N (lysine) as the center of positive charge (which partially motivates the model systems discussed 

below).  However, the experimental data have not been capable of providing certain information that 

would aid in our understanding of how the enzymes function.  For example, it is unclear whether one 

or more H atoms of each methyl group engage in H-bonding with a single acceptor atom.  Nor has it 

been possible to extract the energetics of any individual CH··O interaction, an important consideration 

in terms of whether such bonds can hold the appropriate residues in position for enzymatic function 

and how they might compete with other potential H-bonds.   

Quantum chemical methods offer the potential to address these issues with some clarity.  One of 

the earliest related studies, limited to a very small basis set 65, observed that the methyl group of a 

cationic system could form H-bonds as strong as 15 kcal/mol with a neutral proton acceptor.  Kim et al 
66 later showed that protonated NH donors form H-bonds as strong as 20 kcal/mol with water, but that 
+CH donors are not far behind with a binding energy of 10 kcal/mol; H-bonds of these same donors 

with the π system of benzene were slightly weaker.  The superiority of NH over CH, even in a charged 

situation, was verified by Cannizzaro and Houk 67 using esters as O proton acceptors.  Nonetheless, a 

complex containing only +CH··O type bonds still provided a very strong interaction of some 13 

kcal/mol.  When amplified by a positive charge, the CαH of a lysine model was found 68 to engage in a 

CH··O H-bond of some 4.9 kcal/mol, even though the center of positive charge was well removed from 

the bridging proton by several intervening methylene groups.  With respect to aryl protons, benzene 

cation engages in a +CH··O H-bond with water, with binding energy of 11.4 kcal/mol 69.  A single aryl 

CH of methylpyridinium forms a CH··O bond with an ester 70 of 7.5 kcal/mol, raised to 10.0 kcal/mol 

when this bond is complemented by a second CH··O involving a methyl H.  The magnifying effect of 

charge was evident also 71 in the CH··O H-bond energies of imidazole with water, which jumped from 

2.4 kcal/mol when imidazole was neutral up to 11.3 kcal/mol when protonated.  This result was later 

confirmed by Schmiedekamp and Nanda 58 who extended the concept of positive charge to the 

proximate positioning of a cationic metal.  Along a similar vein, the effects of charge were manifest 
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when the cationic imidazole donor +CH··O H-bond supplanted a neutral NH··O bond as it led to triple 

helical structure 72 of 1-acetamido-3-(2-pyrazinyl)-imidazolium. 

While certainly providing some tantalizing glimpses into the magnification of CH··O H-bond 

strength, the body of past calculations of charge-activated CH··O H-bonds is not as thorough nor as 

robust as it might be.  In particular, it leaves a number of questions only partially answered.  Consider 

the general case where one or more alkyl groups R, each containing a number of potential CH donors, 

are bound to a central atom X, and the entire XRn
+ system bears an overall positive charge.  By just 

how much does the formal positive charge amplify the strength of the CH··O H-bonding to a proton 

acceptor, and how is the H-bond strength affected by the identity of the central atom X?  Is the 

interaction weakened as the CH donor moves further along the alkyl group from the center of positive 

charge, and if so by how much?  How sensitive is the H-bond to the linearity of the CH··O 

arrangement; are multiple bent CH··O bonds superior to a single linear bond?  What is the effect of 

immersion of the system into a solvent of varying polarity?  And as a particularly important question, 

can charge-magnified CH··O interactions compete effectively with neutral H-bonds of the conventional 

OH··O or NH··O sort? 

The present work represents an attempt to answer these questions in a systematic manner.  

Quantum calculations are applied to systems that pair cationic XRn
+  with the O atom of N-

methylacetamide (NMA) as the common proton acceptor.  The latter was chosen in part for its 

similarity to the peptide unit that is so pervasive in proteins.  The central X atom was taken as first S 

and then N, so as to explore both chalcogen and pnicogen types.  And as noted above, both of these 

atoms are of particular relevance with regard to possible +CH··O H-bonds within the transferase class 

of enzymes.  Alkyl groups R were varied in length from methyl up to n-butyl which permit an 

exploration of the way in which distance from the central atom might affect the proton-donating 

potency of CH.  The entire set of cationic systems are compared with their neutral analogues, to obtain 

direct estimates of the effects of charge.  Finally, the systems are immersed in a variety of solvents, to 

assess how the results might be affected by the polarity of the surrounding medium.  The results of this 

work will not only be of fundamental value in understanding ionic CH··O H-bonds in general, but of 

immediate use in better unraveling the mechanism of the methyl transferase enzymes as the model 

systems chosen bear a close resemblance to the actual enzymatic complexes. 

COMPUTATIONAL METHODS 

All calculations were performed via the Gaussian 09 package 73.   The MP2/aug-cc-pVDZ level of 

theory was chosen for its ability to handle H-bonding interactions at a high level of accuracy 55, 74-79.  
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The M06-2X density functional 80 was used for some of the larger systems.  Not only was this method 

developed in order to handle intermolecular interactions, but it has shown good reliability in the past 81-

84 when dealing specifically with CH H-bonds.  In addition, as discussed below, the H-bond properties 

computed by M06-2X/6-31+G** were directly compared with MP2/aug-cc-pVDZ for the particular 

systems of interest here, and shown to be in close coincidence. 

Binding energies were defined as the difference between the energy of the complex and the sum of 

energies of optimized monomers and were corrected for basis set superposition error by the 

counterpoise procedure 85.  (Of all the possible conformers of each trialkylated monomer, the minimum 

chosen was that which most closely matched its structure in the complex, so as to avoid comparing 

unlike conformers.)  All minima were verified as having no imaginary frequencies.  Natural Bond 

Orbital (NBO) analyses 86, 87 were performed via the procedures contained within Gaussian. The 

binding energies of complexes were decomposed by symmetry adapted perturbation theory 88 (SAPT) 

via the Molpro 89 set of codes.  The effects of solvation were estimated using the conductor polarized 

continuum model (CPCM) 90.  NMR chemical shifts were calculated using the GIAO 91, 92 method, as 

coded in the Gaussian-09 program. 

RESULTS 

N-methyl acetamide (NMA) as common proton acceptor was paired with the neutral S(Me)2 and 

N(Me)3 molecules, and then with the corresponding S(Me)3
+ and N(Me)4

+ cations.  Full geometry 

optimizations were carried out at the MP2/aug-cc-pVDZ level of theory, and led to the structures 

illustrated in Fig 1.  It may be noted first that these global minima all share one important characteristic: 

the NMA O atom interacts with as many methyl groups as possible.  In other words, there are three CH··O 

bonds, each to a different methyl group for all complexes, with the exception of S(CH3)2 where there are 

only two such methyl groups present.  The θ(CH··O) angles of these H-bonds all show a good deal of 

deviation from its ideal of 180°, with angles in the 137-150° range.  Such nonlinearities are necessary in 

order to form multiple CH··O bonds with a single O atom.  It might be emphasized that the three 

concurrent H-bonds formed by the O atom in most of these complexes contradicts the notion that the 

presence of only two O lone pairs might similarly limit the number of potential H-bonds. 

The counterpoise-corrected binding energies are displayed as the large blue numbers in Fig 1, and 

illustrate the magnification that is associated with the formal positive charge.  The two neutral complexes 

are bound by 2-5 kcal/mol, with S(CH3)2 forming a stronger complex than does N(CH3)3.  Along with its 

stronger binding, the CH··O H-bonds are shorter in the former case.  The N(CH3)3 complex is not 

symmetric, as one of the CH··O bonds is some 0.3 Å longer than the other two.  Note, however, the much 
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shorter H-bonds in the two charged complexes in Figs 1b and 1d, with distances of about 2.2 Å.  Along 

with this bond contraction comes a magnification of the binding energy to about 20 kcal/mol, with the S-

containing complex again somewhat more strongly bound than its N analogue.  The addition of the 

positive charge to the proton donor molecule enhances the binding energies by some 16 kcal/mol, 

representing a fourfold increase for S and ninefold for N. 

Solvent Effects 

It is generally thought that a polar solvent ought to weaken H-bonds, particularly those of ionic type.  

The effects of solvent were considered by applying the CPCM method which surrounds each system by a 

polarizable continuum of dielectric constant ε.  The systems in Fig 1 were each subjected to a full 

geometry optimization in each solvent chosen, and again the identity as a minimum was verified by all 

positive vibrational frequencies.  The binding energies of each complex are plotted against the Onsager 

function Fo = (ε – 1)/(ε + 2) 93 in Fig 2 where yellow and blue lines indicate S and N complexes, 

respectively, with solid and broken curves designating cationic and neutral complexes. For purposes of 

comparison with a paradigmatic H-bond, the binding energy of the water dimer is included as the solid red 

curve. Fo = 0 for the gas phase, where ε = 1, and this quantity rises asymptotically as the polarity increases, 

reaching its maximum of 0.963 for water where ε=78. 

Examination of Fig 2 confirms that the interaction energy diminishes as the solvent becomes more 

polar.  This relationship is largely a linear one, particularly for the neutral systems.  It is evident that the 

charged complexes are more sensitive to solvent polarity, diminishing more quickly with Fo.  Taking the 

cationic sulfonium S complex as an example, its binding energy decreases from 20.6 kcal/mol in the gas 

phase down to 12.8 kcal/mol when ε = 2.0 and then further to a minimum of 4.6 kcal/mol in aqueous 

solvent. The decrease in the neutral complex of thioether S(Me)2 is more gradual, dropping from 4.9 

kcal/mol at ε = 1 to 2.3 kcal/mol at ε = 78.  Due to the higher sensitivity of the charged complexes to 

solvent polarity, as ε rises the energetic advantage of these ionic systems vs. the neutral complexes 

diminishes.  Yet even for highly polar solvents, the cations form stronger H-bonds than do the neutral 

proton donors.  In fact, even for aqueous solvation, the binding energies of the two charged complexes are 

twice that of their neutral parallels. 

As the CH··O H bond weakens in more polar solvents, the two monomer units are drawn slightly 

further apart, in both neutral and charged complexes. The H-bond distance increases by ~0.1 Å for S 

complexes and ~0.2 Å for N complexes as ε climbs from 1 to 78. Surprisingly the change in H bond 

distance is approximately the same for neutral and cationic complexes, despite the higher sensitivity to ε of 

the binding energy of cationic complexes compared to their neutral analogs.  Along with this 
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intermolecular stretching, the θ(CH··O) bonds become slightly more linear, increasing by 2-8°.  It is 

perhaps worthy of note that the interoxygen distance of the water dimer behaves in an opposite fashion, 

shortening by ~0.1 Å on going from gaseous to aqueous phase, despite its binding energy decrease.  These 

trends are not entirely surprising as similar results were observed previously 93 for related systems.  

One might expect that the solvation energy of each charged monomer should be greater than that of its 

complex with NMA, as the positive charge ought to be more dissipated in the larger system.  And indeed, 

that is precisely what is found.  The solvation energies reported for each system in Tables S1 and S2 show 

that the computed solvation energy of sulfonium S(Me)3
+ is some 5-9 kcal greater than that of 

S(Me)3
+
··NMA complex, while the difference between N(Me)4

+
··NMA and N(Me)4

+ is roughly the same.  

The opposite trend is observed in the neutral systems where the solvation energy of the complex exceeds 

that of the isolated S or N-containing monomer.  And of course, the solvation energies of all charged 

systems are many times greater than their neutral cousins. 

Distance from Center of Charge 

As noted above, adding a full positive charge to the proton donor molecule greatly enhances the 

strength of its CH··O H-bonds.  It is logical to suppose that this change is at least partly the result of a 

more positive bridging proton which can better interact with the O on the proton acceptor.  What then 

might be the effect of elongating the methyl group to ethyl, propyl, etc, and thereby moving the bridging 

proton further from the heteroatomic center of positive charge? 

M06-2X/6-31+G** calculations were performed in order to address this question.  The validity of this 

procedure for these calculations can first be tested by comparison of the binding energies of the methyl 

complexes.  A comparison with MP2 values is displayed in Table 1 where it may be noted that the DFT 

values are fairly close to MP2/aug-cc-pVDZ quantities.  There is a bit of an overestimate by the former, 

but this overestimate is fairly uniform, roughly 1 kcal/mol. 

The geometries of the ethyl and propyl parallels of the ionic methyl complexes of Fig 1 are displayed 

in Fig 3, along with their counterpoise-corrected binding energies, all in the gas phase.  These energies are 

plotted against the alkyl chain length in Fig. 4, where yellow and blue curves again indicate S and N-

containing complexes, respectively.  The solid curves represent the structures in Fig 3 where the NMA 

proton acceptor binds to the terminal methyl groups in each case.  Both S and N-type systems behave 

similarly, with the binding energy diminishing as the methyl group moves progressively further from the 

center of formal charge.  Taking the cationic S complexes as an example, the binding energy of 22 

kcal/mol for S(CH3)3
+
··NMA is cut in half for the propyl analogue. 



8 
 

Along with a weakening of the interaction, there is a concomitant stretch of the distance between the 

two subunits.  These distances are displayed in Table 2 for each of the three methyl groups involved in a 

given complex.  The H-bond stretching that accompanies the lengthening of the alkyl groups is clear in 

this table.  For example, the shortest such H-bond elongates from 2.162 to 2.254 and then to 2.420 Å as the 

alkyl is enlarged from methyl to ethyl to propyl in the charged S complexes; similar trends are observed in 

the N-containing structures. 

It is not only the terminal methyl group which can engage in a CH··O H-bond, but the same is true for 

the methylene groups which lie closer to the heteroatom.  The broken curves in Fig 4 show that when it is 

these CH2 groups, those lying immediately adjacent to S or N, that form CH··O H-bonds with NMA, the 

drop in binding energy is much less precipitous.  Put another way, if the alkyl groups are lengthened, but 

the O of NMA remains bonded to the CH nearest the heteroatom, there is only a small drop in binding 

energy.  This decrease can be readily explained by the fact that the longer alkyl groups permit a greater 

dissipation of the overall positive charge of the cation, thereby reducing the charge on the bridging proton.  

Overall, then, the patterns in Fig 4 are consistent with a picture of positive charge on each cation that 

extends over the entire molecule, but becomes progressively smaller as one moves away from the 

heteroatom. 

These ideas are confirmed by examination of the electrostatic potentials that surround each monomer.  

This potential is of course positive everywhere as the ion carries a positive charge.  But there are 

gradations in this potential.  The blue contours of Fig 5 indicate the  most positive areas, and red the least 

positive, covering a range between 0.20 and 0.25 au.  In both the S and N cases (upper and lower sections 

of Fig 5, respectively) as one progresses from methyl to ethyl to propyl, the terminal methyl groups 

become less positive, i.e. redder.  Likewise, albeit more subtle, one can see a lessening of the positive 

potential around the H atoms that lie close to the N/S as each alkyl group grows.  (The neutral molecules 

have a much weaker positive potential around the H atoms, peaking at around 0.08 au for S(CH3)2 and at 

0.06 for N(CH3)3.)  Not only the electrostatic potentials, but also the atomic charges, reflect these same 

patterns.  The natural charges of the terminal methyl H atoms undergo a decrease as the alkyl chain 

elongates.  For example, the average natural charge of these three H atoms is 0.28 for N(Me)4
+ and drops 

to 0.26 in N(Pr)4
+.  The H atoms that lie close to the N/S also undergo a drop in positive charge, but a 

lesser one. 

Nature of Interaction 

A question that arises concerns the nature of the interaction in these charged complexes.  Is it primarily 

a simple electrostatic interaction between the two species or is there some degree of true H-bonding, as 



9 
 

occurs in more classically H-bonded systems such as the water dimer?  There are several vehicles to assess 

the nature of the interaction.  For one thing, H-bonds typically involve a certain amount of charge transfer 

between the proton acceptor atom and the σ* antibonding orbital of the donor, as measured by NBO 

parameters.  Table 3 reports the second-order perturbation energy E(2) for the putative CH··O H-bonds.  

Olp→σ*(C-H) quantities are supplemented by transfers from the CO π bond (in parentheses).  Olp→σ*(C-

H) E(2) amounts to between 0.5 and 1.7 kcal/mol for the neutral complexes, supplemented by 0.4-0.8 

kcal/mol from the π(CO) bond.  These quantities lie in the range of what is expected for a H-bond.  They 

are considerably enhanced when the proton donor is charged, rising to as much as 6.7 and 1.8 kcal/mol, 

respectively, for the methylated systems.  The former quantities refer to each individual CH··O H-bond; 

when summed over all three such bonds, they amount to 14-18 kcal/mol (last column of Table 3), 

consistent with a strong charged H-bonded complex.  Note that these E(2) quantities drop as the CH donor 

is further removed from the heteroatom, fully consistent with the total binding energies reported above. 

Decomposition of the binding energies also offers valuable clues about the nature of the interaction.  

Such a decomposition was carried out using the SAPT procedure, and the results are presented in Table 4.  

The electrostatic is the largest component for the ionic complexes in the last two columns, followed by 

induction and dispersion which make comparable contributions to one another.  This pattern is consistent 

with what one would expect for H-bonds.  The neutral complexes have a much reduced electrostatic 

component, although the dispersion energy is comparable to that of the ionic systems.  The larger DISP as 

compared to ES is not a feature typically seen in H-bonds, although it does occur on occasion. 

Yet another tool used to distinguish H-bonds concerns the electron density.  More specifically, there is 

a characteristic pattern that occurs within the shifts of electron density when a H-bond is formed.  These 

shifts are illustrated in Fig 6 where gains of density are indicated by blue contours and losses by red.  In all 

complexes, there is a red region of density loss surrounding each bridging proton, as well as a blue region 

of gain in the vicinity of the proton-accepting O atom of NMA.  This pattern reproduces a typical 

fingerprint of H-bond formation so supports its characterization as such.  Further confirmation arises from 

the observation that these same patterns become more intense as the binding energy rises, as in the 

progression S(Me)2 < S(Pr)3
+ < S(Et)3

+ < S(Me)3
+. 

Whereas the formation of conventional H-bonds, e.g. OH··O, induces a stretching of the O-H bond in 

the proton donor molecule, the situation with CH··O analogues has been found to be less predictable.  

While there is a trend for sp-hybridized CH bonds, as in HCCH, to stretch just like their OH counterparts, 

those that are engaged in sp3 hybridization tend 32 to contract, although this is not a hard and fast rule.  The 

geometric changes occurring within the proton donor molecules here obey an interesting pattern. The 
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bridging CH bond of the terminal methyl groups of the sulfonium SR3
+ cation stretches when R=Me or Et, 

but undergoes a contraction for R=Pr; the same is true for the N-containing molecules.  On the other hand, 

when the bridging proton is associated with a methylene group that is immediately adjacent to the S/N 

heteroatom, the CH bond undergoes a small contraction, less than 3 mÅ. 

A useful experimental tool for identifying H-bonds resides in NMR spectroscopy, as the bridging 

proton typically shifts downfield 94, 95 by several ppm.  Prior work has shown that CH··O H-bonds conform 

to this trend 96-98, albeit generally exhibiting a smaller shift which comports with the weaker nature of this 

H-bond.  In order therefore to add to our pallet of H-bond identification tools, the NMR chemical 

shieldings were computed for the various protons in each of the systems described above.  The changes in 

the shielding, as compared to the isolated monomers, are reported in the first two columns of data in Table 

5 where negative values correspond to a deshielding and downfield shift.  As the geometries reflect a 

trifurcated arrangement, with very similar CH··O H-bond energies, it is not surprising to see very similar 

shifts for the three corresponding protons.  Consequently, the values listed in Table 5 refer to the average 

changes of all three bridging protons.  (Nonbridging protons exhibit much smaller changes, and in the 

upfield direction.) 

Inspection of Table 5 quickly reveals that the downfield shifts are roughly proportional to the H-bond 

energies. Taking the S series as an example, the shift for neutral thioether S(Me)2 is less than 1 ppm, but 

this quantity enlarges to 2.23 ppm for the cationic S(Me)3
+.  Following down the first column of Table 5, it 

is clear that as the terminal methyl group moves further from the S atom, the shift lowers eventually down 

to 1.15 ppm for the tripropyl species.  The next column of Table 5 refers to those complexes wherein the 

NMA acceptor binds not to the terminal methyl group, but rather to the methylene group adjacent to S.  

Just as in the case of the binding energy, the downfield shift is lowered much more slowly as the alkyl 

chain grows, remaining above 2 ppm.  Very similar trends are observed for the N series.  It may be 

concluded that the NMR chemical shifts fully support the characterization of these interactions as full 

bodied H-bonds. 

Rapid rotations of methyl groups frequently make it difficult to experimentally separate the NMR 

signals of the bridging proton of a given methyl group from the H atoms that are not so involved.  What is 

frequently observed instead is an average of all three of these signals.  Therefore as a guide to 

experimentalists, the third column of Table 5 reports the average change in the chemical shielding of all 

protons of the terminal H-bonded methyl groups, both H-bonded and non-H-bonded.  Due to the upfield 

shift of the latter, these averages are much smaller in magnitude than those in the first column, but are 
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downfield nonetheless.  As a rule of thumb, the downfield shift is less than -0.1 ppm for the neutral 

complexes, but lies in the range between -0.3 and -0.5 for the ionic H-bonds. 

With specific respect to methyl rotations, each methyl group is staggered with respect to its neighbors 

in its optimal orientation.  Rotation of a single methyl must cross a barrier which involves an eclipsed 

structure.  These barriers are calculated in the methyl derivatives to vary from 2.2-2.6 kcal/mol for the 

thioethers and 4.8-5.0 kcal/mol for the amines  When complexed with NMA, the barriers increase a small 

amount, between 0.1 and 0.9 kcal/mol, presumably due to the disruption of one of the CH··O H-bonds.  

Other Geometries of H-bonds 

As indicated above, the most stable configuration of each dimer involves a trifurcated H-bond, in the 

sense that the NMA O atom engages in a H-bond simultaneously with three CH bonds, each on a different 

alkyl chain.  The question that comes to mind is how much the energy might suffer if the trifurcation 

involves the three H atoms on a single methyl group.  In order to answer this question, a set of restricted 

geometry optimizations were carried out wherein the θ(XC··O) angle (X=S,N, or C) was held equal to 

180°.  Counterpoise-corrected binding energies are plotted against the length of the  alkyl chain in Fig 7 as 

broken curves where yellow and blue lines again represent S+ and N+ complexes respectively.  It is first 

clear that these binding energies diminish as the chain elongates and the terminal methyl group is drawn 

further from the heteroatomic center of positive charge, just as was noted earlier.  The very near 

coincidence of the yellow and blue curves in Fig 7 indicates there is little difference imparted by the nature 

of this heteroatom.  But perhaps most importantly, the binding energies in Fig 7 are considerably lower 

than those in Fig 4 so that one may conclude that trifurcation with three separate alkyl chains is preferable 

to trifurcation with a single methyl group.  For example, the trifurcated complexes for the N(CH3)4
+ and 

S(CH3)3
+ cations in Fig 4 are bound by 20.3 and 22.2 kcal/mol respectively, considerably larger than the 

14.5 kcal/mol when the O is allowed to interact with a single methyl group of either cation. 

Part of the explanation of this weaker interaction is likely due to greater strain of the H-bonds.  The 

θ(CH··O) angles lie in the 84-91° range for the single methyl group, but this range extends to 125-151° 

when three separate methyl groups interact with the proton acceptor.  NBO analysis confirms that this 

angular factor is important.  The small  θ(CH··O) angles hinder the transfer of charge from the O lone pair 

to a CH σ* antibond.  Instead, what charge transfer there is goes from the O lone pair to the σ* 

antibonding orbital of the X-C bond (X=S,N,C).  And it should be emphasized the E(2) is rather small in 

any case, between 0.7 and 3.1 kcal/mol.  Other evidence for the weakness of these H-bonds arises from the 

calculated NMR spectrum.  As reported in the penultimate column of Table 5, the three bridging protons 

shift downfield by only 0.4 - 0.8 ppm, considerably less than the values listed in the preceding columns of 
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Table 5 when three separate methyl groups are involved in the trifurcated arrangement.  Finally, this 

trifurcated interaction with a single methyl group results in small contractions of the three C-H bonds, but 

only by about 1 mÅ, and this bond shortening is attenuated as the alkyl chain is elongated from methyl to 

butyl. 

Another possibility which is worthy of examination involves a single, linear CH··O H-bond.  Since 

there is no minimum on the surface that corresponds to such a structure, a restriction of θ(CH··O)=180° 

was introduced into the geometry optimization, after placing the NMA O atom proximate to a terminal 

methyl group.  The counterpoise-corrected binding energies of these complexes are displayed as the solid 

curves in Fig 7, where again one sees a diminishing trend as the alkyl chain elongates.  Note that these 

solid curves are slightly higher than the broken curves, suggesting that a single linear CH··O H-bond is 

energetically superior to a trifurcated arrangement with one methyl group.  In other words, a proton 

acceptor prefers to approach a methyl group along a C-H axis as compared to the tetrahedron face.  But 

even these linear CH··O H-bonds are inferior to the trifurcated arrangements of Fig 4 which involve three 

different alkyl chains.  As a secondary issue, the formation of the linear CH··O H-bonds results in a C-H 

stretch.  In the case of the S cations, this elongation varies from a minimum of 0.4 mÅ for the terminal 

methyl of a butyl chain to 4.5 mÅ for a methyl group.  The stretch is consonant with charge transfer into 

the CH σ* antibond, which is largest for the methyl group where E(2)=13.7 kcal/mol, and decreases 

monotonically as the alkyl chain elongates, to a minimum of 4.3 kcal/mol for the butyl chain.  The strength 

of this single H-bond is further underscored by the NMR signal of the bridging proton, which the last 

column of Table 5 shows to shift downfield by 2.5 - 3.5 ppm, a somewhat greater amount than in the case 

of the three separate, bent H-bonds of the preceding columns of Table 5.  As in the earlier bonding 

situations, the shift is roughly proportional to the binding energy, diminishing as the alkyl chain is 

elongated and the bridging proton is removed further from the S/N center of charge. 

There were additional minima located in the potential energy surfaces that offer further refinements in 

terms of geometric preferences.  For example, as one might expect two H-bonds are inferior to three, when 

all proton donors are terminal methyl groups.  Similarly, a complex containing two H-bonds to methylene 

protons is of course more weakly bound than one which makes use of three such methylenes.  On the other 

hand, these same two H-bonds that involve groups close to the S/N center of positive charge are superior 

to three CH··O bonds to terminal methyl groups, further from this center. 

SUMMARY AND DISCUSSION 

The alkylated thioethers and amines engage in CH··O H-bonding to the NMA proton acceptor, with 

binding energies of 2-5 kcal/mol.  The addition of a positive charge to the proton donor molecule 
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magnifies the interaction by a factor of 5-9, such that sulfonium S(Me)3
+ is bound to NMA by more than 

20 kcal/mol.  In all cases, the proton acceptor atom prefers interacting with as many CH groups as 

possible, i.e. multiple bent CH··O H-bonds are more favorable than a single linear one.  There is also an 

energetic preference for the O to interact with H atoms on separate alkyl groups, as compared to several H 

atoms on the same R.  H atoms that lie closer to the central atom with its formal charge make the strongest 

H-bonds.  The binding energy drops much more precipitously with alkyl chain length if the O is able to 

interact only with the terminal methyl H atoms, furthest from the central atom.  This phenomenon may be 

explained on the basis of an attenuating positive electrostatic potential as one moves further from the S or 

N center of positive charge.  The H-bonds formed by CH donors in species with a central S atom are 

slightly stronger than in the case of the amines.  With regard to environment, the strengths of the CH··O H-

bonds are reduced as the solvent in which the systems are immersed becomes more polarizable.  

Nonetheless, the ionic +CH··O H-bonds remain stronger than neutral OH··O analogues, even in aqueous 

solution. 

The CH··O interactions have all the hallmarks of true H-bonds.  The shifts of electron density that 

accompany the formation of the dimers fit the usual fingerprint pattern of H-bonds.  NBO analysis reveals 

a transfer of charge into the CH σ* antibonding orbital, and the magnitude of the corresponding second 

order energies are proportional to the overall binding energies.  NMR chemical shifts of the bridging 

protons reflect the deshielding that is another marker of H-bonds, and this shift is roughly proportional to 

binding energy.  SAPT decomposition of the total interaction energy shows the dominant term to be 

electrostatic, but very substantial contributions are made by induction and dispersion as well.  The change 

in the C-H bond length caused by H-bond formation is not uniform.  Whereas this bond undergoes a 

stretch for the more strongly bound complexes, this trend reverses as the H-bond weakens.  This pattern is 

not unlike what has been seen over the years for other CH··O H-bonds, some of which lengthen while 

others contract. 

The results described here agree well with earlier work in the recent literature on related systems.  Our 

binding energy of N(CH3)4
+ compares nicely with an earlier computation where this cation was paired with 

water for a binding energy of 9.7 kcal/mol at the MP2/6-311+G** level 66.  When other authors 67 

interacted HN(CH3)3
+ with an ester O, their optimized structure contained a trifurcated H-bond with three 

separate methyl groups like the ones found here, and with a binding energy of 12.9 kcal/mol with a 6-

311++G** basis set.  When this system was immersed in a dielectric medium, the binding energy suffered 

diminution, and became repulsive for ε > 8.  Other +CH··O H-bonds were also found to drop in binding 

energy as dielectric constant was raised 70, in this case with methylpyridinium as proton donor.  And a very 
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recent work 99 agreed that a single linear +CH···O H-bond is energetically superior to a bifurcated 

arrangement when both H atoms are bonded to the same C. 

There has been some question as to whether the interaction between an amine and proton acceptor such 

as NMA is strengthened by the charge or by the number of methyl groups bound to the central N atom.  

That is, what is the difference between adding a charge via a fourth methyl group to form N(CH3)4
+ as was 

done here, as compared to forming the cation via addition of a proton, as in HN(CH3)3
+ as might occur in 

low-pH solution?  A full geometry optimization via the MP2/aug-cc-pVDZ of the complex between NMA 

and HN(CH3)3
+ was therefore performed.  The counterpoise-corrected binding energy was computed to be 

19.5 kcal/mol, 0.7 kcal/mol stronger than that of the tetramethylammonium complex of Fig 1d.  The 

details of the two geometries are nearly identical, with R(CH··O)=2.2 Å in either case, and with θ(CH··O) 

angles within 1° of one another.  The very small energetic advantage of the HN(CH3)3
+ complex may be 

attributed to a slightly greater concentration of positive charge on the three remaining methyl groups. 

It would appear then that +CH··O H-bonds can be quite strong, with binding energies as high as 20 

kcal/mol.  These bonds exceed the strength of the typical NH··O=C H-bonds that provide the organizing 

force for such common protein structures as α-helix or β-sheet.  While attenuated somewhat within the 

context of a polarizable medium, they nonetheless retain their greater strength when compared to neutral 

H-bonds.  As such, these H-bonds can exert a strong influence on enzyme activity or in binding of 

substrates. 

The calculations reveal a greater depth about the specifics of the mode of binding.  When a substrate of 

the type SR3
+ is placed within a protein interior, there will be a strong tendency for its CH groups to 

engage in CH··O H-bonds with neighboring residues.  If only a single proton acceptor is nearby, the 

overall preference will bring that acceptor as close as possible to the central S atom, and for three separate 

R chains to all participate in the trifurcated H-bonding.  The interaction will weaken if the acceptor is 

forced by steric constraints to interact with CH groups that lie further from S, e.g. the terminal methyl 

groups.  If other constraints permit H-bonding of the acceptor to only one methyl, a single CH··O is 

favored over three bent H-bonds to that same methyl group.  But the latter issues notwithstanding, it is 

emphasized that even with some of these weakening factors in play, +CH··O H-bonds are strong ones, 

surpassing neutral H-bonds, even those involving the electronegative O and N atoms as proton donors. 
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FIGURE  CAPTIONS 
 
Fig 1. Optimized geometries (MP2/aug-cc-pVDZ) of  a) S(Me)2, b) S(Me)3

+, c) N(Me)3, and d) 
N(Me)4

+ complexes with NMA as H bond acceptor.  Blue numbers represent counterpoise-
corrected binding energies in kcal/mol. Distances in Å and angles in degrees. 

 
Fig 2. Binding energies plotted against Onsager function (Fo) for S(Me)2, S(Me)3

+, N(Me)3 and 
N(Me)4

+ complexes with NMA as proton acceptor, as MP2/aug-cc-pVDZ level. Yellow and 
blue colors indicate S and N donors, respectively, solid curves for cationic and dotted for 
neutral complexes. Red line represents neutral water dimer. 

 
Fig 3. Optimized geometries (M06-2X/6-31+G**) for S+ and N+ complexes with elongated alkyl 

groups; NMA as proton acceptor. Blue numbers indicate counterpoise-corrected binding 
energies in kcal/mol. Distances in Å and angles in degrees. 

 
Fig 4. Variation of binding energy with increase in alkyl chain length of R3S

+ (yellow) and R4N
+ 

(blue) complexes with NMA. Solid lines represent trifurcated CH···O H bonding with one CH 
of each of three terminal CH3 groups; dotted lines indicate O interacting with the three CH2 
groups closest to central S or N atom.  

 
Fig 5. Electrostatic potential maps for alkyl-substituted S+ and N+ monomers. Contours range from 

0.20 - 0.25 au.  Blue and red colors indicate most and least positive regions, respectively, on 
the van der Waals atomic surface. 

 
Fig 6. Electron density shifts arising from formation of each complex: proton donor is listed, and  

NMA is proton acceptor in all cases. Blue regions indicate density increase, and red a density 
loss. Contours are shown at the 0.0005 au level. 

 
Fig 7. Variation of binding energy for cationic complexes with increase in alkyl chain length.   

Broken curves were generated when all three CH donors arise from the same terminal methyl 
group; a single CH··O H-bond is characterized by solid curves.  N donors are indicated by 
blue, and S by yellow. 
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Table 1.  Binding energies (kcal/mol) of complexes with NMA  
computed at two levels of theory 
proton donor MP2/aug-cc-pVDZ M06-2X/6-311+G** 
S(Me)2 4.88 6.26 
S(Me)3

+ 20.55 22.17 
N(Me)3 2.05 2.83 
N(Me)4

+ 18.79 20.29 
 
 
 
 
Table 2.  R(H··O) distances (Å) in complexes of NMA with terminal methyl groups, at M06-2X/6-
31+G** level. 
proton donor binding E, kcal/mol R(H···O), Å 
  Me-1 Me-2 Me-3 
S(Me)2 6.26 2.385 2.457  
S(Me)3

+ 22.17 2.162 2.188 2.192 
S(Et)3

+ 15.00 2.254 2.258 2.279 
S(Pr)3

+ 10.71 2.420 2.442 2.473 
      
N(Me)3 2.83 2.605 2.633 2.941 
N(Me)4

+ 20.29 2.205 2.214 2.23 
N(Et)4

+ 14.10 2.265 2.268 2.273 
N(Pr)4

+ 10.47 2.385 2.385 2.402 
 
 
 
 
 
Table 3: NBO values of E(2) (kcal/mol) for complexes involving terminal methyl groups, at M06-
2X/6-31+G** level. 
proton donor Olp→ σ*(C-H) (πCO→ σ*(C-H)) 

 
Total  

 Me-1 Me-2 Me-3  
S(Me)2 1.29(0.59) 1.72(0.84)  4.44 
S(Me)3

+ 4.82(1.03) 3.72(1.81) 6.65(0.18) 18.21 
S(Et)3

+ 3.25(1.00) 3.59(0.52) 4.54(0.06) 12.96 
S(Pr)3

+ 1.51 1.20(0.26) 1.09(0.10) 4.16 
      
N(Me)3 0.54(0.56) 0.86(0.41)  2.50 
N(Me)4

+ 3.81(0.92) 3.11(1.18) 5.27(0.06) 14.35 
N(Et)4

+ 4.30(0.06) 3.00(1.04) 3.75(0.39) 12.54 
N(Pr)4

+ 2.21 1.60(0.34) 1.77(0.20) 6.12 
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Table 4: SAPT decomposition of total binding energies (kcal/mol) of S 
and N complexes with NMA as H-bond acceptor. 
 S(Me)2 N(Me)3 S(Me)3

+ N(Me)4
+ 

ES -7.39 -3.32 -25.23 -22.60 
EX 10.47 7.25 14.50 12.44 
IND -4.57 -3.26 -8.38 -7.01 
IND+EXIND -1.26 -0.66 -5.50 -4.73 
DISP -8.56 -6.53 -7.29 -6.48 
DISP+EXDISP -7.31 -5.60 -6.20 -5.55 
 
 
 
 
Table 5: Changes in NMR chemical shielding (σ, ppm) of protons caused by complexation with 
NMA at M06-2X/6-31+G** level. 
 terminal CH3

a CH adjacent 
to S/Nb 

average of 
all Hc 

single 
CH3··O

d 
single 
CH··Oe 

S(Me)2 -0.74 -0.74 -0.09 -0.46 -1.91 
S(Me)3

+ -2.23 -2.23 -0.44 -0.79 -3.50 
S(Et)3

+ -1.73 -2.12 -0.41 -0.52 -2.98 
S(Pr)3

+ -1.15 -2.11 -0.33 -0.51 -2.49 
       
N(Me)3 -0.82 -0.82 -0.07 -0.46 -1.36 
N(Me)4

+ -2.01 -2.01 -0.45 -0.70 -3.22 
N(Et)4

+ -1.76 -1.78 -0.46 -0.52 -2.99 
N(Pr)4

+ -1.46 -1.92 -0.44 -0.56 -2.50 
aaverage of only bridging H atoms, with NMA H-bonded to multiple terminal methyl groups 
baverage of only bridging H atoms, with NMA H-bonded to methylene groups adjacent to central atom 
caverage change of all H atoms, bridging and non-bridging, of terminal methyl groups H-bonded to 
NMA  
daverage of bridging H atoms, with NMA H-bonded to 3 H atoms of a single methyl group 
eNMA H-bonded to a single H atom in a linear CH··O arrangement 
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Fig 1. Optimized geometries (MP2/aug-cc-pVDZ) of  a) S(Me)2, b) S(Me)3

+, c) N(Me)3, and d) 
N(Me)4

+ complexes with NMA as H bond acceptor.  Blue numbers represent counterpoise-
corrected binding energies in kcal/mol. Distances in Å and angles in degrees. 
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Fig 2. Binding energies plotted against Onsager function (Fo) for S(Me)2, S(Me)3

+, N(Me)3 and 
N(Me)4

+ complexes with NMA as proton acceptor, as MP2/aug-cc-pVDZ level. Yellow and blue 
colors indicate S and N donors, respectively, solid curves for cationic and dotted for neutral 
complexes. Red line represents neutral water dimer. 
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Fig 3. Optimized geometries (M06-2X/6-31+G**) for S+ and N+ complexes with elongated alkyl 

groups; NMA as proton acceptor. Blue numbers indicate counterpoise-corrected binding energies 
in kcal/mol. Distances in Å and angles in degrees. 
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Fig 4. Variation of binding energy with increase in alkyl chain length of R3S

+ (yellow) and R4N
+ 

(blue) complexes with NMA. Solid lines represent trifurcated CH···O H bonding with one CH of 
each of three terminal CH3 groups; dotted lines indicate O interacting with the three CH2 groups 
closest to central S or N atom.  
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a) S(Me)3
+ b) S(Et)3

+ c) S(Pr)3
+

d) (Me)N(Me)3
+

e) (Et)N(Et)3
+ f) (Me)N(Pr)3

+
 

 
 
Fig 5. Electrostatic potential maps for alkyl-substituted S+ and N+ monomers. Contours range from 

0.20 - 0.25 au.  Blue and red colors indicate most and least positive regions, respectively, on the 
van der Waals atomic surface. 
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a) S(Me)2 b) S(Me)3
+

c) S(Et)3
+ d) S(Pr)3

+

e) N(Me)3 f) (Me)N(Me)3
+

g) (Et)N(Et)3
+ h) (Me)N(Pr)3

+
 

 
Fig 6. Electron density shifts arising from formation of each complex: proton donor is listed, and  

NMA is proton acceptor in all cases. Blue regions indicate density increase, and red a density 
loss. Contours are shown at the 0.0005 au level. 
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Fig 7. Variation of binding energy for cationic complexes with increase in alkyl chain length.   

Broken curves were generated when all three CH donors arise from the same terminal methyl 
group; a single CH··O H-bond is characterized by solid curves.  N donors are indicated by blue, 
and S by yellow. 

 
  

4

6

8

10

12

14

16

18

1 2 3 4

alkyl chain length

linear CH--O

linear XC--O



32 
 

TOC Graphic: 
 

+CH---O

+

20 kcal/mol 14 kcal/mol16 kcal/mol

+ +

 


