211 research outputs found

    Sustained-input switches for transcription factors and microRNAs are central building blocks of eukaryotic gene circuits

    Get PDF
    WaRSwap is a randomization algorithm that for the first time provides a practical network motif discovery method for large multi-layer networks, for example those that include transcription factors, microRNAs, and non-regulatory protein coding genes. The algorithm is applicable to systems with tens of thousands of genes, while accounting for critical aspects of biological networks, including self-loops, large hubs, and target rearrangements. We validate WaRSwap on a newly inferred regulatory network from Arabidopsis thaliana, and compare outcomes on published Drosophila and human networks. Specifically, sustained input switches are among the few over-represented circuits across this diverse set of eukaryotes

    Quality control and evaluation of plant epigenomics data Comment

    Get PDF
    Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species

    PlantSimLab - a modeling and simulation web tool for plant biologists.

    Get PDF
    BACKGROUND: At the molecular level, nonlinear networks of heterogeneous molecules control many biological processes, so that systems biology provides a valuable approach in this field, building on the integration of experimental biology with mathematical modeling. One of the biggest challenges to making this integration a reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate mathematical models well enough to use them as tools for hypothesis generation. Available modeling software packages often assume some modeling expertise. There is a need for software tools that are easy to use and intuitive for experimentalists. RESULTS: This paper introduces PlantSimLab, a web-based application developed to allow plant biologists to construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by experimentalists, without direct assistance from mathematical modelers. CONCLUSIONS: Mathematical modeling techniques are a useful tool for analyzing complex biological systems, and there is a need for accessible, efficient analysis tools within the biological community. PlantSimLab enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user interface that does not require mathematical modeling expertise. It makes analysis of complex models accessible to a larger community, as it is platform-independent and does not require extensive mathematical expertise

    E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells

    Get PDF
    Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Wac: a new Augmin subunit required for chromosome alignment but not for acentrosomal microtubule assembly in female meiosis

    Get PDF
    The bipolar spindle forms without centrosomes naturally in female meiosis and by experimental manipulation in mitosis. Augmin is a recently discovered protein complex required for centrosome-independent microtubule generation within the spindle in Drosophila melanogaster cultured cells. Five subunits of Augmin have been identified so far, but neither their organization within the complex nor their role in developing organisms is known. In this study, we report a new Augmin subunit, wee Augmin component (Wac). Wac directly interacts with another Augmin subunit, Dgt2, via its coiled-coil domain. Wac depletion in cultured cells, especially without functional centrosomes, causes severe defects in spindle assembly. We found that a wac deletion mutant is viable but female sterile and shows only a mild impact on somatic mitosis. Unexpectedly, mutant female meiosis showed robust microtubule assembly of the acentrosomal spindle but frequent chromosome misalignment. For the first time, this study establishes the role of an Augmin subunit in developing organisms and provides an insight into the architecture of the complex

    Potential Role of miRNAs in Developmental Haemostasis

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that are negative regulators in a crescent number of physiological and pathological processes. However, their role in haemostasis, a complex physiological process involving multitude of effectors, is just beginning to be characterized. We evaluated the changes of expression of miRNAs in livers of neonates (day one after birth) and adult mice by microarray and qRT-PCR trying to identify miRNAs that potentially may also be involved in the control of the dramatic change of hepatic haemostatic protein levels associated with this transition. Twenty one out of 41 miRNAs overexpressed in neonate mice have hepatic haemostatic mRNA as potential targets. Six of them identified by two in silico algorithms potentially bind the 3′UTR regions of F7, F9, F12, FXIIIB, PLG and SERPINC1 mRNA. Interestingly, miR-18a and miR-19b, overexpressed 5.4 and 8.2-fold respectively in neonates, have antithrombin, a key anti-coagulant with strong anti-angiogenic and anti-inflammatory roles, as a potential target. The levels of these two miRNAs inversely correlated with antithrombin mRNA levels during development (miR-19b: R = 0.81; p = 0.03; miR-18a: R = 0.91; p<0.001). These data suggest that miRNAs could be potential modulators of the haemostatic system involved in developmental haemostasis

    Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    Get PDF
    Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). photoreceptor

    miRMaid: a unified programming interface for microRNA data resources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are endogenous small RNAs that play a key role in post-transcriptional regulation of gene expression in animals and plants. The number of known miRNAs has increased rapidly over the years. The current release (version 14.0) of miRBase, the central online repository for miRNA annotation, comprises over 10.000 miRNA precursors from 115 different species. Furthermore, a large number of decentralized online resources are now available, each contributing with important miRNA annotation and information.</p> <p>Results</p> <p>We have developed a software framework, designated here as miRMaid, with the goal of integrating miRNA data resources in a uniform web service interface that can be accessed and queried by researchers and, most importantly, by computers. miRMaid is built around data from miRBase and is designed to follow the official miRBase data releases. It exposes miRBase data as inter-connected web services. Third-party miRNA data resources can be modularly integrated as miRMaid plugins or they can loosely couple with miRMaid as individual entities in the World Wide Web. miRMaid is available as a public web service but is also easily installed as a local application. The software framework is freely available under the LGPL open source license for academic and commercial use.</p> <p>Conclusion</p> <p>miRMaid is an intuitive and modular software platform designed to unify miRBase and independent miRNA data resources. It enables miRNA researchers to computationally address complex questions involving the multitude of miRNA data resources. Furthermore, miRMaid constitutes a basic framework for further programming in which microRNA-interested bioinformaticians can readily develop their own tools and data sources.</p
    corecore