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Abstract 

Understanding plant gene promoter architecture has long been a challenge due to the lack of 

relevant large-scale data sets and analysis methods. Here we present a publicly available, large-

scale transcription start site (TSS) dataset in plants using a high-resolution method for analysis of 

5’ ends of mRNA transcripts. Our dataset is produced using the Paired-End Analysis of 

Transcription Start Sites (PEAT) protocol, providing millions of TSS locations from wild-type 

Col-0 Arabidopsis whole root samples. Using this dataset, we grouped TSS reads into “TSS tag 

clusters” and categorized clusters into three spatial initiation patterns: narrow peak, broad with 

peak, and weak peak. We then designed a machine learning model that predicts the presence of 

TSS tag clusters with outstanding sensitivity and specificity for all three initiation patterns. We 

used this model to analyze the transcription factor binding site content of promoters exhibiting 

these initiation patterns. In contrast to the canonical notions of TATA-containing and more broad 

“TATA-less” promoters, the model shows that, in plants, the vast majority of transcription start 

sites are TATA-free, and are defined by a large compendium of known DNA sequence binding 

elements. We present results on the usage of these elements, and provide our Plant PEAT Peaks 

(3PEAT) model that predicts the presence of TSSs directly from sequence. 
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Introduction 

Transcriptional regulation is an integral process for the control of cell and organ identity, growth, 

development, differentiation, and response in many organisms. Knowledge of transcriptional 

start sites (TSSs) and promoter architecture are thus crucial for understanding the transcriptional 

regulation underlying these fundamental processes. For genes transcribed by RNA polymerase II 

(pol-II), the architecture of promoter regions has been extensively studied in many prokaryotes 

and eukaryotes, such as bacteria, yeast, and humans (David et al., 2006; Yamashita et al., 2011; 

Jorjani and Zavolan, 2014; Park et al., 2014). A major component of promoter architecture 

identified in animal species are DNA sequence elements, which are bound by different 

components of the pol-II transcription initiation machinery (Kadonaga, 2004; Thomas and 

Chiang, 2006; Kadonaga, 2012). With this information, detailed models of promoter architecture 

have been developed in these animal species (Smale and Kadonaga, 2003; Juven-Gershon and 

Kadonaga, 2010; Grunberg and Hahn, 2013). 

In plants, DNA sequence elements that are known to play an important role in gene expression 

include the pol-II binding elements TATA and Initiator, as well as additional elements which are 

thought to play an enhancer role in some settings. These additional elements include specific 

Transcription Factor Binding Sites (TFBSs) such as DOF, MYB, and MADS Box, as well as 

general sequence enrichments including Y-Patch and GA content. Classical reviews on the 

subject (Grasser, 2006) follow past animal-based models for a ‘core promoter’ region consisting 

of position-specific DNA sequence binding elements TATA and Initiator, with common 

inclusion of a CCAAT box proximal to the core promoter. However, these models of plant core 

promoter structure were postulated without high-resolution genome scale TSS information, at a 

time when less than one hundred well-characterized examples were available in plants.  Since 

this time, there have been no major changes to views of plant core promoters.  More recently, 

motif-discovery based analyses utilizing thousands of available promoter examples (Yamamoto 

et al., 2009; Yamamoto et al., 2011) have included a focus on general sequence enrichments such 

as Y-Patch, GA and CA elements, hypothesizing that these enrichments may play a similar role 

to CpG islands in mammalian promoters. CpG islands are found in the promoters of many 

mammalian genes (Saxonov et al., 2006), and their presence has been used as a key feature in 

TSS prediction models (Deaton and Bird, 2011). Yet to date, little is known about the specific 

combinations of elements in pol-II promoters that likely lead to transcription in plants. 
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Conventional annotation of plant TSSs rely on low- to mid-throughput technologies such as 

EST/cDNA alignment, 5’ RACE, and modified versions of MPSS. Most TAIR10 annotated 

TSSs are at best based on the alignment of ESTs. EST/cDNA based annotations of 5’ transcript 

locations are known to be inaccurate, given that they rely on a reverse transcriptase based assay. 

The precise identification of gene promoter regions allows for the characterization of pol-II 

binding elements that have positional constraints: for example the TATA-box element is known 

to be found between 25 and 45 nucleotides (nt) upstream of the TSS. Accurate location of the 

promoter also assists in the identification of functional Transcription Factor (TF) binding 

sequences (TFBSs), which are short, degenerate sequence motifs found in both intergenic and 

promoter sequences. 

For pol-II transcribed non-coding RNAs, this inference problem of functional core promoter 

identification is more extreme, as little data on the location of the RNA primary transcript may 

be present. microRNAs (miRNAs)—small RNAs that regulate gene expression relevant to the 

development of many eukaryotes—are a prominent example of this problem because the TSS of 

each miRNA primary transcript is located in an unknown region that is at a variable distance 

from the mature miRNA sequence. Individual TSSs identified using 5’ RACE have been 

determined for about 50 Arabidopsis miRNAs (Xie et al., 2005), but the landscape of primary 

transcript TSSs remains entirely unknown for the majority of the 337 known Arabidopsis 

miRNAs (Griffiths-Jones et al., 2006). Further complicating promoter analysis with publicly 

available data, such as annotated TAIR10 transcripts, is the fact that transcription does not 

always initiate from a single location, but for some genes, can initiate at any site within a short 

genomic window (Carninci et al., 2006; Ni et al., 2010). Therefore, for all pol-II genes, a more 

detailed dataset is needed that accurately describes the TSS locations which are most highly 

expressed relative to neighboring locations. 

In this study, we employ the Paired End Analysis of Transcription Start Sites (PEAT) protocol to 

generate a high-throughput TSS dataset because of its accuracy in other organisms, nucleotide 

resolution, and paired-end mapping capability (Ni et al., 2010) to analyze a pooled root sample 

of the first sequenced plant, the Columbia-O ecotype of Arabidopsis thaliana (Arabidopsis 

Genome Initiative, 2000). The high resolution of the PEAT dataset allows us to categorize the 

TSS tags into distinct transcription initiation patterns, then identify position-specific enrichments 

for known TFBS signals in proximity to each initiation pattern. We use these signals to construct 

an accurate machine learning model for each initiation pattern called the Plant PEAT Peaks or 
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“3PEAT” model. 3PEAT predicts the probability of a TSS at any given nucleotide in the 

Arabidopsis genome solely from the DNA sequence surrounding that nucleotide. It is trained and 

tested on separate partitions of each initiation pattern category. Because the 3PEAT model is 

able to achieve a remarkably high combination of sensitivity and specificity, analysis of its 

features yields direct insight into the combinations of plant promoter elements that give rise to 

pol-II transcription. 

Results 

Our dataset is composed of short regions representing the 5’ ends of pol-II RNA transcripts, 

obtained using the PEAT protocol.  Cap-trapping protocols such as CAGE (Carninci et al., 2005) 

and PEAT (Ni et al., 2010) aim to isolate pol-II mRNA transcripts and sequence the capped ends 

(TSS tags) with nucleotide resolution. Recent analyses using genome-scale TSS datasets 

produced with PEAT and CAGE in animal tissues (Ni et al., 2010; Batut et al., 2013; Nepal et 

al., 2013) have observed that TSSs are not simply located at one or even a few “alternative start 

site” locations upstream of each pol-II gene. When these TSSs are mapped back to the genome, 

they distribute spatially in a variety of different “TSS tag clusters” or “initiation patterns.” In 

animals, these initiation patterns have been associated with different core promoter elements, 

gene functions, and chromatin structure (Carninci et al., 2006; Rach et al., 2009; Rach et al., 

2011). Narrow Peak animal promoters are typically significantly enriched for TFBS motifs and 

associated with development and differentiation, while genes with Weak Peak initiation patterns 

contain fewer significant TFBS enrichments and are often housekeeping genes. 

In this study, we use the nomenclature of other PEAT studies (Ni et al., 2010): (1) a Narrow 

Peak [NP] pattern represents a narrow genomic segment containing a very large number of TSS 

tags, (2) a Broad with Peak [BP] pattern is a region where many tags are spread over a relatively 

wide genomic segment with a narrow region containing a majority of the TSS tags, and (3) a 

Weak Peak [WP] pattern is a case where relatively fewer tags are observed within a segment and 

shape may be less definitive, nonetheless a clear tag cluster is present. To be clear on naming, the 

WP category is most similar to the “Broad” category in the original CAGE-Based analyses in 

mammalian genomes (Carninci et al., 2005; Carninci et al., 2006). Our PEAT dataset yields ~4 

million tag pairs mapping with the highest certainty, identifying 24,207 TSS tag clusters 

associated with 17,619 protein-coding genes, and is comparable in gene expression coverage 

with RNA-Seq data in similar root samples (Supplemental Figure 1) (Brady et al., 2007; Li et al., 

2013).  
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The PEAT procedure starts with TAP digestion, which removes the 5’ CAP or 5’ PPP from 

transcripts resulting in ones with a 5’ P. Since there are transcripts in vivo (degradation 

intermediates) that have 5’ P, these “background” transcripts could contribute to the observed 

TSS patterns. To assess this possibility, we compared the locations of TSS tag cluster peaks to 

the TAIR10 annotation of the associated gene. These results show that all PEAT TSS tag clusters 

located within the promoter region of genes closely agree with TAIR10 annotation. For example, 

for all peaks taken together (regardless of shape or number of reads), the median distance 

between peak modes and TAIR10 annotations was only 35 nucleotides. Individually, NP clusters 

were located a median of 50 nt, BP clusters 22 nt, and WP clusters 32 nt from the TAIR10 

annotation. With 100 reads per tag cluster specified (the minimum required for inclusion in the 

model), the median distance across all initiation patterns dropped to 18 nt (distances within the 

classes were as follows: NP, 4 nt; BP, 10 nt; WP, 24 nt) (Supplemental Figure 2). In summary, 

this analysis shows that all PEAT TSS tag clusters agree closely with the TAIR10 annotations, 

even at the minimum read level. Therefore, we consider it unlikely that any background 

transcripts present contribute substantially or in a biased way toward the observed tag clusters of 

any type. 

Distinct patterns of transcription initiation exist in plants 

Similar to what has been observed in animal systems, our data shows that distinct patterns of 

transcription initiation exist in Arabidopsis (Figure 1, Table 1, and Supplemental Table 1). 

Previous computational studies of promoter regions upstream of similar TSS initiation patterns in 

animals have shown that it is possible to predict the locations of NP TSSs from DNA sequence 

(Frith et al., 2008; Megraw et al., 2009; Rach et al., 2011). A machine learning model called S-

Peaker (Megraw et al., 2009) was constructed to use sequence content along with the position 

specificity and binding affinity of TFBSs to reveal which factors are important for achieving a 

sharp spatial ‘peak’ of transcription. The S-Peaker study confirmed the hypothesis that, at least in 

the NP TSS case for animals, many elements can play a guiding role in pol-II transcription 

initiation, and these elements are most likely to do so in TF-specific locations with respect to a 

highly transcribed TSS location. 

Given that plant promoters have proven to be very difficult cases for TSS prediction models 

(Shahmuradov et al., 2003; Shahmuradov et al., 2005) we posit that TFBS model-based analysis 

(Megraw et al., 2009) would be an appropriate method to solve this challenging problem. Due to 

the lack of CpG islands in plants as compared with mammalian promoters (Kapranov, 2009), 
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many alternative sequence enrichments must collectively be examined for efficacy. Specific 

positional relationships for TFBSs with respect to TSSs are poorly documented in plants beyond 

TATA-box. These positional relationships between TFBSs and TSSs are currently unknown for 

a majority of TFs, and may well be serving as the key to transcription initiation. In addition, 

these relationships are likely not limited to single-TSS locations. A large dataset containing 

millions of tags that map stringently to a well-sequenced and well-annotated genome is likely to 

be sufficient for an accurate model, at least in the case of NP promoters. We expected that a 

tissue sample such as the root, with its complex regulatory network (Bruex et al., 2012; Lan et 

al., 2013), would be enriched for rapidly dividing cells where tissue-specific patterning is taking 

place, a setting expected to give rise to many sharp Narrow Peak TSSs, in addition to more 

broadly distributed gene promoters typically associated with ubiquitously expressed genes. 

The location of transcription initiation can be accurately modeled by DNA binding 

affinity in plants 

We next investigated whether a plant-specific TSS identification model based on DNA sequence 

features and machine learning can address plant-specific complexity such as the lack of CpG 

islands. We examined this question by using the large PEAT TSS initiation pattern dataset to 

query whether patterns of sequence enrichments and spatial positioning of elements that lead to 

pol-II transcription could be identified. In this model, each PEAT tag cluster in the dataset was 

collapsed to a single genomic location representing the most highly expressed nucleotide relative 

to neighboring locations (the TSS tag cluster mode), with an upstream promoter region that 

contains computationally identified TFBS elements at specific locations relative to this TSS 

mode (Figure 2). A control group of randomly chosen sequences was selected from the genome, 

representing a wide variety of sequences that are not pol-II transcribed. To identify sequence 

elements that show TFBS enrichment, we next searched the promoters for specific upstream 

locations where these TFBS elements could be collectively enriched (Methods: 3PEAT TSS 

Peak Prediction Model). We used a standard log-likelihood TFBS scanning technique to 

approximate DNA binding affinity along with a set of 200 known plant elements characterized in 

the literature (Grasser, 2006; Megraw et al., 2006; Bryne et al., 2008; Wingender, 2008; Civan 

and Svec, 2009; Yamamoto et al., 2009). 

We identified a subset of at least 150 elements exhibiting TFBS enrichment on at least one strand 

within each initiation pattern category (Supplemental Data Set 1). In concordance with what has 

been previously reported, we observed sharp well-defined enrichment signals for the canonical 



 9 

pol-II elements TATA and Initiator in the NP class. We also identified novel TFBS elements that 

are associated with the core promoter region or with position-specific locations with respect to a 

TSS. In total, we observed at least 20 such novel elements within each initiation pattern category 

(Supplemental Figures 3-5). We also observed that each initiation pattern had high levels of 

enrichment for a different set of elements, in some cases also with minor differences in 

enrichment location or enrichment region width, suggesting that different initiation patterns are 

regulated by different factors, as has been reported in animals (Carninci et al., 2006; Rach et al., 

2009). We therefore used these different regions of enrichment separately, training a different 

version of our model for each initiation pattern. 

With the purpose of designing a highly interpretable model that effectively selects among many 

sequence features within a minimal set for optimal classification performance, we performed 

model training and 10-fold cross-validation (Methods: 3PEAT TSS Peak Prediction Model) 

using L1-regularized logistic regression (Koh et al., 2007). As in (Megraw et al., 2009), input 

features to the model reflect whether each TFBS element has a binding sequence signal present 

within that TFBS’s region of enrichment (ROE) with respect to the specific genomic location 

being examined (e.g., Chr 1:+:34,567). An ROE (Methods: 3PEAT TSS Peak Prediction Model) 

is a segment of genomic sequence where a specific TF is preferentially located with respect to 

many observed TSSs; it represents a location of putative biological relevance for TF binding. 

The model output is a probability that the genomic location under examination is the mode of a 

TSS distribution within the given initiation pattern. Each model was trained using positive 

examples from its initiation pattern group, and negative examples selected from the immediate 

upstream regions of these TSSs as well as from annotated coding sequence. Model performance 

was measured by the area under the ROC curve (auROC) and area under the Precision Recall 

Curve (auPRC) of the model on an independent subset of PEAT data that was not used to train 

the model (Supplemental Figures 6 and 7). After observing strong testing performance within 

each shape class (Supplemental Figures 6 and 7), we constructed an ALL model trained on the 

union of all initiation patterns. 

We observed that the NP model has the strongest performance (auROC of 0.98 and auPRC of 

0.89). Remarkably, we were able to train models that performed nearly as well for BP and WP 

classes. This outcome suggests that all TSS tag clusters in Arabidopsis are likely associated with 

position-specific element combinations and enrichments. Perhaps even more surprising was the 

excellent performance of the ALL model (Supplemental Figure 8), where auROC matched the 



 10 

peak shape models at 0.98 and auPRC of 0.88 fell within two percent of these specific models. 

This finding supports the hypothesis that although position-specific TFBS enrichments differ for 

each initiation pattern, when taken together, TF affinities for specific regions within the promoter 

are collectively predictive of a TSS mode regardless of pattern. Thus, the ALL model appears to 

successfully account for different usages of the elements in different transcriptional landscapes to 

create a “promoter signature” based only on TF binding affinity for promoter sequences in all 

three initiation patterns. This finding suggests that the locations of highly expressed TSSs are 

accurately distinguished using DNA sequence signals alone. We name our model design for the 

NP, BP, WP, and ALL TSS initiation pattern classes the “3PEAT” (Plant PEAT Peaks) model. 

3PEAT enables genomic scans for Pol-II protein coding and microRNA gene TSSs 

Because auROC and auPRC values on a relatively small test set of locations can be deceiving, 

(Lobo et al., 2008), the ability to produce a high-resolution signal when scanning a model over 

large regions of the genome may still fail even if the model achieves high auROC and auPRC. 

This failure in signal detection occurs because genomic sequence usually contains an 

overwhelming number of negative examples, and only a tiny percentage of these examples can 

reasonably be included in the test sets from which auROC and auPRC values are computed. 

Relative to the entirety of the Arabidopsis genome, there are few genomic locations are TSS 

peak modes. If the 3PEAT negative training sets poorly characterize the large variety of 

locations that are not TSS peak modes, then when the model is scanned over genomic regions, an 

overwhelming number of false positive calls will be produced. Therefore, we further tested 

3PEAT in genomic scanning to determine if the model design and training set together translate 

into a useful performance outcome.  

Each 3PEAT initiation pattern model (NP, BP, WP, and ALL) was scanned over the entire set of 

genomic sequence locations within 4kb of each test set example (Supplemental Figure 9). 

Scanning performance was evaluated by an auROC curve estimate (Supplemental Figure 9a). 

Sensitivity was approximated by the percentage of PEAT peak mode TSS locations “hit” by the 

probability output signal at a given threshold, and specificity was approximated by the number of 

additional TSS locations hit per kilobase (Methods: 3PEAT TSS Peak Prediction Model). This 

evaluation of scanning performance is a highly conservative approximation because some of the 

additionally predicted TSS locations may in fact be PEAT TSS mode locations, but we consider 

that it provides a fair estimate. Supplemental Figure 9a mirrors our previous observations 

(Supplemental Figures 6-8). In conservative auROC estimates, individual initiation pattern 
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models and the model combining ALL patterns performed extremely well; individual pattern 

models and the model for ALL pattern types also performed similarly to each other. These data 

validate our approach by demonstrating that even in genomic scans, the 3PEAT models do not 

produce a large number of false positives. In Supplemental Figure 9b, we plotted a different 

estimate of scanning resolution that reflects the ability of each trained model to center high 

probability output signals on the peak modes. Here we observed clear differences in probability 

signal resolution, with the NP shape model producing the highest scanning resolution and the 

WP model producing the lowest. The ALL model was trained from both NP peaks (relatively 

fewer cases) and WP peaks (relatively many cases compared to NP), therefore it stands to reason 

that the ALL model’s scanning performance at second-to-lowest is proportionally influenced. 

For example, at a probability threshold of 0.5, the centers of the NP model probability peaks are 

within about seven nucleotides of 80% of actual NP modes. For the ALL model at the same 

probability threshold, probability peaks are within 20 nucleotides (nt) of about 75% of ALL 

initiation pattern modes. This resolution is quite remarkable. One would expect that a model 

trained on a specific initiation pattern type would more precisely estimate the location of the 

mode (most highly transcribed location) of that pattern, with the most precise estimate for NPs. 

Figure 3 shows an example of a scan using the WP model (all scans are provided in 

Supplemental Data Sets 2-4). For all models, probability signals agree closely with PEAT tag 

distributions of each pattern type as well as with the TAIR10 annotation. This agreement 

supports the conclusion that, when taken together on appropriate training sets, numerical 

performance measures such as auROC and auPRC accurately reflect predictive power in 

genomic scanning. 

Although microRNA primary transcripts are degraded after processing in the cell nucleus 

(Rogers and Chen, 2013), we still observed 40 PEAT peaks in our dataset that were located in 

the near upstream regions of ~30 TAIR10-annotated miRNA precursors (Methods: PEAT TSS 

Peaks Dataset Production). To determine if the TSS tag clusters identified by the PEAT protocol 

were consistent with past observations derived using traditional laboratory techniques, we 

compared the miRNA-proximal TSS locations identified in this study with a set of 66 miRNA 

primary transcript TSS locations from a 5’ RACE study in Arabidopsis (Xie et al., 2005). Among 

this set of miRNAs with 5’ RACE-supported locations, 15 miRNA upstream regions were in 

common with our putative miRNA TSS peaks. We compared the precise locations of our PEAT 

TSS tag cluster modes with the reported locations of the 5’ RACE observations. Strikingly, 12 of 
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15 had close agreement: eight had a cluster mode within 1 nt of the 5’ RACE location, and an 

additional four had a cluster mode within 7 nt of the 5’ RACE location. Of the 3 locations that 

did not agree closely, all locations were within 50 nt of a secondary 5’ RACE TSS observation. 

Most surprising was the strong agreement regardless of initiation pattern or expression level. 

Some tag clusters contained as little as 10 tags at the mode, the minimum number considered for 

PEAT tag clusters in our study; yet mode location was identical to a reported 5’ RACE TSS 

location. 

We then used this small set of 40 miRNA-proximal peaks as a test set for the 3PEAT ALL and 

NP models (Supplemental Figure 10).  This test set includes many primary transcript clusters 

with as few as 10 reads, whereas the protein coding test and training sets contain at least 100 

reads per cluster. As expected, performance on this dataset was reduced compared to that of our 

large protein-coding test set. Performance was still better than expected, given the small number 

of reads associated with many of these TSSs. We observed that at reasonable mid-level 

probability thresholds (0.4 to 0.6 range), the models are quite specific but not very sensitive 

(Supplemental Figure 10). Some miRNA NPs as well as other types of peaks are missed. While 

this reduced performance is likely in part due to the liberal collection of miRNA primary 

transcript clusters, it also suggests that TSSs just upstream of mature sequences may not be the 

only peaks for miRNA primary transcripts, and that additional miRNA proximal peaks may have 

a promoter composition that differs somewhat from protein-coding genes. These observations are 

consistent with past computational studies on plant miRNAs (Megraw et al., 2006) and may 

reflect the fact that miRNAs have multiple distinct heavily used TSS locations, which seems 

consistent with findings in mammalian systems that indicate miRNAs have multiple, complex 

transcripts that are related to the occurrence of numerous downstream miRNA processing steps 

(Saini et al., 2007; Bhattacharyya et al., 2012; Marco et al., 2013). In summary, our study 

indicates that 3PEAT is a useful model for the identification of high confidence, highly 

expressed TSS locations for miRNA primary transcripts in the absence of laboratory data in the 

region of interest. 

PEAT provides significant gains in TSS resolution over the TAIR10 annotation 

We constructed a 3PEAT model based exclusively on TAIR10 annotation, and compared its 

performance with the PEAT dataset based model.  We observed that the TAIR10 based model 

achieved an auROC of 0.95.  This was not substantially lower than that of the 3PEAT ALL 

model (0.98), but auPRC performance suffered considerably—0.69 for TAIR10 as compared 



 13 

with 0.88 for ALL (Supplemental Figure 11). The Regions of Enrichment defined by the 

TAIR10 based model were considerably less well-defined than the enrichments of the PEAT-

based models (Figure 4). Genomic scanning performance suffered as well, showing a 50% 

decrease in positional resolution compared to the PEAT ALL model (Supplemental Figure 12).  

To understand this loss of performance, we evaluated how closely the PEAT data agrees with 

TAIR10 annotation overall. PEAT tag clusters located within 500 nt of an annotated gene are 

centered on average 40 nt from the annotated gene start site (see Supplemental Figure 2). Given 

this difference, enrichment locations determined using the TAIR10 annotations do not precisely 

reveal where pol-II must interact with an element to initiate transcription. The impact of this shift 

is shown in Figure 4. These differences in ROE width and location cause the TAIR10-based 

model to miss important combinations of elements present within their biologically relevant 

location. Overall, these results strongly indicate that a high resolution dataset is critical for 

accurately characterizing Arabidopsis promoter architecture. 

3PEAT model feature analysis yields shape-dependent promoter signatures 

An important question in the study of gene regulation is the composition of a functional 

promoter. The L1-regularized logistic regression approach used in 3PEAT has a major benefit in 

that model features are highly interpretable. The features of the 3PEAT model measure the 

presence of individual binding elements (TATA, Ini, CAAT-box, MADS-box, etc) within their 

ROEs on each DNA strand with respect to the location under examination (see Supplemental 

Methods: Model Features for details). Feature weights used by the model are directly 

proportional to their importance in the model’s predictive success. The weights of a successful 

NP model determine a promoter signature for NPs. A specific weighting of feature elements is 

thus produced that accurately determines whether an input sequence location is likely to be an 

NP. Figure 5 and Supplemental Figure 13 display detailed promoter signatures for the NP, WP, 

and BP models. 

Given the unique promoter signatures for NP, WP, and BP patterns, we were interested in 

determining whether these different initiation patterns associate with different biological 

processes. For this determination, we selected the set of TAIR10 protein coding genes associated 

with one or more TSS tag clusters of each initiation pattern and queried these sets for statistically 

over-represented (p < 0.01) Gene Ontology (GO) terms (Supplemental Data Set 5). We 

examined the over-represented terms unique to each initiation pattern for common themes. We 

observed that the unique NP category contains terms that pertain to oxidative stress (similarly 
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reported in (Yamamoto et al., 2009)), biogenesis, and membrane systems. BP themes included 

chromatin, biosynthesis and metabolism, and ATP-related and transport terms. WP themes dealt 

with metabolism and catabolism, as well as general protein-related processes. In general, 

statistically over-represented terms unique to the NP category tended to relate to processes that 

must occur at a particular time and place in a developing tissue or cell. This category contained 

the smallest number of unique GO terms. In contrast, the WP category contained approximately 

six times as many terms (representing about six times as many peaks) with a clear tendency 

toward general processes associated with housekeeping cellular functions. The BP category 

contained an intermediate number of terms that are not typically associated with housekeeping 

genes but rather processes necessitating stronger gene expression routinely at certain times in the 

circadian cycle. These general observations suggest that an organism’s unique use of the 

different promoter peak shapes is largely consistent with animal studies (Hoskins et al., 2011). 

NPs in our study tend to associate with spatiotemporal processes in an organism, which are 

controlled by promoter element combinations that come together at a precise, narrow region on 

the genome to initiate a strong burst of transcription. WPs tend to associate with a variety of 

processes requiring at least a low, maintenance level of transcription. The BP promoter signature 

may reflect a need for both of these capabilities, including processes that must be induced rapidly 

at a particular routine time. 

Pol-II gene expression depends largely on presence of location-specific TFBS 

combinations that are TATA-free 

Previous studies (Yamamoto et al., 2009; Yamamoto et al., 2011) reported that TATA-box and 

sequence enrichments, such as GA content, were associated heavily with TSS peaks of different 

patterns. These reports suggest that given a high-resolution dataset and a model that uses 

location-specific enrichments, these features alone could be explanatory. We tested whether this 

dataset would support equally strong performance using TATA-box along with GA, CA, and GC 

content. We trained and tested the 3PEAT NP model using only these features. This model 

achieved an auROC of 0.95, an auPRC of 0.68, and very poor scanning performance 

(Supplemental Figure 14). TATA and sequence enrichments, even position-specific versions of 

these features, are neither necessary nor sufficient for transcription. To understand the nature of 

this observation, we examined the occurrence of TATA in our dataset, partitioned by initiation 

pattern (see Figure 6 and Supplemental Table 2). 
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While TATA presence or absence is clearly a strong predictive factor in all of our 3PEAT 

promoter signatures, Figure 6 shows that promoters containing a statistically significant TATA 

signal within the approximate region necessary for pol-II transcription (-45:-25) (TATA+ 

promoters) are not in the majority for any peak shape category. The percentage of TATA+ 

promoters associated with an NP shape is higher than other shapes, but clearly no overwhelming 

association between TATA and NP promoters was observed in our data when TATA location 

with respect to the TSS is accounted for. Plant promoters in general have been thought to be 

largely TATA-containing, however this observation is confounded by the fact that the 

Arabidopsis genome is AT-rich (Megraw et al., 2006). When a log-likelihood scanning threshold 

that controls for false positives is used (Methods: 3PEAT TSS Peak Prediction Model), and the 

location of the TATA-box signal with respect to TSS is accounted for, we observe that at most 

approximately 22% of the 9,325 genes expressed in our dataset have a TATA+ promoter. This 

result is consistent with our observation that, in fact, many other signals not limited to TATA, in 

the right position-specific combinations, are necessary and sufficient to induce gene expression 

(Figure 5). 

Discussion 

High-throughput TSS sequencing is necessary for detailed promoter analysis 

As pol-II is responsible for the transcription of protein coding genes and microRNAs, one of the 

most expedient methods for identifying transcriptional and post-transcriptional control networks 

is to first identify known TF binding sequences in the ‘promoter’ region around a TSS. However, 

the overall frequency of functional TF binding events in vivo, the functional combinations with 

other elements, and the positional preferences within plant gene promoters remain largely 

unknown. In a popular model, the TATA-box and one of several possible plant-specific forms of 

the Initiator element may alone form a recognizable core promoter of pol-II transcribed genes in 

plants (Grasser, 2006; Yamamoto et al., 2011). Yet, some well-studied and highly expressed 

plant genes do not contain an upstream TATA site (Nakamura et al., 2002), and this combination 

of short sequence elements is abundant in intergenic regions.  

Several published works provide TSS analysis for datasets on the order of thousands of sites in 

plants (Gowda et al., 2006; Yamamoto et al., 2007), the largest of these sets uses CT-MPSS 

technology in a pooled sample of Arabidopsis tissues (Yamamoto et al., 2009). The CT-MPSS 

study suggests that plant promoters are divided into two groups, associated with TATA and GA 

respectively. In this framework, TATA is the predominant element necessary for sharp, narrow 
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peaks of TSS tags along the genome, whereas GA enrichment gives rise to other TSS landscapes. 

By contrast, our analysis shows that promoter shape observations and the conclusions drawn 

from these observations can change dramatically as sequencing depth changes.  

The library sample depth and sequencing quality that can be achieved through PEAT is 

substantially greater than that of past technologies used to generate published plant TSS datasets, 

such as CT-MPSS. PEAT has benefits and limitations as compared to other high-throughput TSS 

sequencing methods such as CAGE (Shiraki et al., 2003). Benefits include the repeatability of 

PEAT measurements verified over many technical replicates in published studies (Ni et al., 

2010). Both PEAT and CAGE have been shown in animals to yield reproducible data at the level 

of promoter distribution shapes (Carninci et al., 2006; Ni et al., 2010). PEAT in particular has a 

reliable cap-trap system, is capable of identifying 5’ location at nucleotide resolution (Ni et al., 

2010), and yields strong alignment accuracy due to its paired-end strategy. Using a technique 

that provides accurate mapping of the 5’ cap locations of pol-II transcripts is the key to our 

study, and our analysis of ROEs for TATA, Initiator, and a wide variety of additional TFBS 

elements bears out PEAT data quality at this level. The primary limitation of PEAT is the 

amount of input material necessary to create a library, as at least 30 micrograms of total RNA is 

required. When enough material is available, PEAT provides high-quality data for pol-II TSS 

regions that are in excellent agreement with past datasets. An advantage of PEAT is that it 

extends resolution to the point where a carefully designed model can recover TSS peak presence 

from sequence alone with high probability. 

Arabidopsis TSS initiation patterns have distinct promoter signatures 

A striking aspect of the model promoter signatures is that they are comprised of many 

substantially weighted elements, only a few of which have been reported in the literature to have 

a strong influence on promoter type (e.g. TATA-box, Initiator, GA content). In fact, for each 

initiation pattern, most of the elements in the signatures have not been previously discussed in 

the literature as ‘core promoter elements’ having location-specific signals. The SQUAMOSA 

(SQUA) element is just one among many such examples. SQUA is contained in the promoter 

signatures for all patterns, is most heavily weighted in NP, and has a distinct ROE peak at 

exactly -36 in all 3 peak shapes. We provide the ROE tables and enrichment plots for all factors 

in Supplemental Data Set 1. Beyond the use of many position-specific TF elements, we further 

observed that although TATA and GA are important for determining the presence of all 

transcription initiation patterns, the relative importance of these elements differs across pattern 
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type. In the NP case, the signature is dominated by the importance of TATA together with a 

large block of sequence enrichments including GA content, CA content, Y-Patch, and GC 

content, followed by many specific TF elements. The WP case is proportionally dominated by 

TATA and GA. Beyond the TATA and GA elements, a large array of nearly equally weighted 

TF specific elements comprise this signature. Finally, the BP signature is in some sense a 

combination of these qualities; presence of TATA is proportionally important, followed by a 

particular GA-rich element BPC1 (also highly weighted in WP) and a mixture of lesser-weighted 

sequence enrichments and TF specific elements. Our models thus show that multiple sequence 

enrichments are highly important in plants such as Arabidopsis, and perhaps interchangeable in 

some cases. GA content can play an important role in plant WP cases, unlike in mammals where 

lowly transcribed tag clusters do not have a clear association with CpG enrichment (Megraw et 

al., 2009). However, the presence of a variety of TF-specific elements can also collectively 

contribute a high weight to the likelihood of a WP tag cluster. In this way, GA content in plants 

is not a perfect analogy for CpG enrichment in mammal genomes. Finally, BPs are not 

distinguished solely by lack of TATA signal and presence of sequence enrichments; rather, BPs 

appear to arise as a result of many possible complex combinations of TF elements and sequence 

enrichments together in a genomic region. 

Functional plant promoters do not show a clear division into ‘core’ and ‘proximal’ regions 

Our study demonstrates that similar to animal systems (Megraw et al., 2009), many TFs 

potentially involved in the regulation of genes expressed in the Arabidopsis root have positional 

constraints relative to the TSS. However, our results strongly suggest that Arabidopsis promoters 

are not divided into a ‘core promoter region’ and a ‘proximal promoter region’ as they are 

classically defined in animal organisms.  The regions immediately upstream of Arabidopsis TSS 

tag clusters may contain many possible elements, but none of these elements appear to be an 

absolute requirement for expression. Common pol-II binding elements, such as TATA, do have 

location-specific signals, but these signals are neither necessary nor sufficient for expression to 

occur. In our analysis, we find that many enrichments are not only location specific, but their 

locations are further upstream than the canonical ‘core’ region. Furthermore, most of these 

elements were not previously viewed as ‘core’ elements. We also find that while many 

enrichments are location-specific, others are in fact quite general. Whether these enrichments 

collectively take the place of CpG Islands is unclear. Our study shows that no single enrichment, 

including GA enrichment, has the same signal strength as CpG islands in mammals (Megraw et 
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al., 2009). Collectively, all of the position-specific and non-position-specific enrichments appear 

to form a unified Arabidopsis promoter region. 

Conclusion 

We used a high resolution PEAT dataset to accurately model the probability of a TSS tag cluster 

mode, using only DNA sequences as input and our PEAT TSS tags as training locations. It 

remains a challenge to predict the quantity of transcript expression at any given genomic 

location, as opposed to the likelihood of a peak shape mode. Additional data, such as information 

about chromatin status, may be important for determining the absolute quantity of expression.  

We hope that the data and analysis provided by our study will spur follow-up investigations into 

open questions, such as the quantity of transcript expression, which our data poses. Our work 

successfully identified a large number of location-specific TF binding elements that were 

previously thought to be ‘enhancers’. By contrast, we show the existence of clear enrichments in 

the proximal promoter region within ~40 nt from the TSS mode. Furthermore, we describe 

different initiation patterns, in particular NP modes, which allow de novo sequence element 

searches to be used much more productively than in the past, due to accurate locations for highly 

expressed TSSs. Finally, our PEAT TSS promoter locations and position-specific TF binding 

locations will facilitate more accurate computational network analyses in plants, such as those 

aimed to predict levels of transcript expression and TF binding to individual promoters. The 

nature of our high-resolution dataset and knowledge of promoter architecture from our 3PEAT 

model will inform future studies of the control of gene expression that are vital to understanding 

cellular and organ identity, growth, development, differentiation, and response of plants. 

Methods 

PEAT TSS Peaks Dataset Production 

Sample and library preparation 

A. thaliana Col-O wild-type seeds were sterilized using 50% (vol/vol) bleach and 0.1% Tween 

for 5 minutes and then rinsed five times with sterile water. Nylon mesh was placed on top of the 

solidified media [1.0% agar (10 g), 0.5 g of MES (M-2933; Sigma), 1% sucrose (10 g), 4.33 g of 

MS salts (catalog no. 11117-066; Invitrogen), pH to 5.7–5.8 with KOH]. Following vernalization 

(2 days at 4 °C), sterilized seeds were evenly plated in two dense rows with about 500 seeds per 

row. Seedlings were grown vertically on plates for 7 days at 22 °C in a Percival with 16 hours of 

constant illumination. Seven days after being placed in the Percival, roots were cut and harvested 
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from the seedlings just below the root-hypocotyl junctions. Samples were ground in liquid 

nitrogen and total RNA was isolated using the RNeasy kit (Qiagen USA, Valencia, CA) 

according to the manufacturer's instructions. Samples were pooled for 144 μg of total RNA, from 

which a PEAT library was prepared according to a previously published protocol (Ni et al., 

2010). The library was sequenced on an Illumina Hi-Seq 2000 sequencer. 

PEAT TSS data processing 

Paired-end reads were mapped to the TAIR10 transcriptome (Lamesch et al., 2012) using the 

same procedure as in (Ni et al., 2010). TSS tag clusters were then partitioned into NP, BP, and 

WP initiation patterns (see Supplemental Methods: PEAT TSS Data Processing for details).  

PEAT Data Quality Analysis 

PEAT sequencing depth analysis 

To determine whether the sequencing depth achieved was sufficient to represent the gene 

expression state in our pooled Arabidopsis root samples, we performed a saturation analysis on 

our tag cluster dataset. Starting with our full set of stringently mapped reads, we randomly 

sampled 10%, 20%, and so on up to 100% of the reads; for each sample, we re-performed the 

same process described above to produce our annotated tag cluster dataset, starting with a 

requirement of 10 reads per tag cluster. For each subsampled, re-clustered set of reads, we 

recorded the number of annotated genes associated with the resulting tag clusters (Supplemental 

Figure 16A). We observed that the amount of annotated gene increase between subsamples in 

Supplemental Figure 15A leveled off nearly to zero as the subsample size grew to 90% and then 

100% of the reads, indicating that the sampling depth we achieved was within a few percent of 

the maximum depth that could be achieved. Additional details and analysis are described in 

Supplemental Methods: Sequencing Depth Analysis. 

PEAT comparison to existing data for coding and non-coding transcripts 

The list of genes expressed in the PEAT dataset was compared with those genes found to be 

expressed in publically available microarray and RNA-Seq datasets for wild-type Arabidopsis 

roots (Brady et al., 2007; Li et al., 2013). The mutually expressed genes in these three datasets 

show excellent overlap (Supplemental Figure 1). 

To compare the PEAT tag clusters in our dataset associated with annotated miRNAs, we 

identified 40 peaks whose mode was within 4kb upstream of an Arabidopsis miRNA precursor 

recorded in miRBase (Griffiths-Jones et al., 2006),and then compared the location of the mode of 
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each peak with previously reported TSS locations determined using 5’ RACE assays (Xie et al., 

2005). 15 miRNA precursor upstream regions contained TSSs reported in common to both sets, 

and we report the distances between the PEAT peak modes and 5’ RACE TSS locations in each 

case in the Results section. The outstanding agreement between 5’ RACE locations and PEAT 

peak modes suggests that the RACE assays effectively sampled the most highly expressed TSS 

locations for these miRNA-associated regions. 

PEAT peak distance comparison with TAIR annotations 

To evaluate how closely our PEAT data agreed with the TAIR10 gene annotation, we calculated 

the distance between the tag cluster modes located in gene promoter regions (within 500 nt of an 

annotated TAIR10 gene) and their associated TAIR10 gene start locations. These distances were 

computed for each initiation pattern (NP, BP, WP), and additionally at varying cutoff 

requirements for the number of reads per tag cluster (Supplemental Figure 2). 

3PEAT TSS Peak Prediction Model 

3PEAT model construction 

The 3PEAT model was constructed in a similar manner to that described in (Megraw et al., 

2009). 

Data Sets 

PEAT tag clusters (or “peaks”) are groups of contiguously mapping PEAT TSS tags, where each 

TSS tag corresponds to the 5’ end of a capped pol-II RNA transcript. We annotated tag clusters 

by initiation pattern and TAIR10 association, and selected all highly-expressed tag clusters for 

our analysis (Supplemental Methods: Tag Cluster Annotation). Tag clusters were separated into 

training and testing partitions prior to model construction (Supplemental Methods: Model Data 

Sets). 

Regions of Enrichment and Transcription Factor Selection 

To identify regions where transcription factor binding sequences are enriched with respect to the 

TSS, we started with a set of 203 TF Positional Weight Matrices (PWMs) collected from a 

variety of sources (Grasser, 2006; Megraw et al., 2006; Bryne et al., 2008; Wingender, 2008; 

Civan and Svec, 2009; Yamamoto et al., 2009). While the PWMs used in this study were derived 

using experimentally-supported data (rather than strictly computational approaches), PWMs are 

rarely a perfect characterization of TF binding domains or their sequence specificity. Due to their 

short length, the sequences described by PWMs appear commonly throughout the genome, but 
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many of these identified sequences are not involved in gene regulation. Secondly, PWMs cannot 

directly capture higher-order relationships between nucleotides. These issues were mitigated 

through the use of Regions of Enrichment and background correction. 

PWMs were first processed with pseudocounts as described in (Megraw et al., 2009). Using the 

Scanner Toolset for TFBS Discovery (Megraw et al., 2009; Megraw et al., 2013; Morton and 

Megraw, 2014) to compute log-likelihood scores, each PWM was scanned over an 8 kb region 

centered around the tag cluster mode, identifying the regions where each TF binding site was 

most likely to occur across all examples in the training dataset. Regions of Enrichment (ROEs) 

were defined on both strands by identifying the highest scoring region for each PWM across all 

training examples. PWMs with log-likelihood score peaks (maximum score) up to 4 kb from the 

TSS were considered. If the scores computed at nucleotides surrounding the peak dropped below 

the background score for more than 5 nucleotides, the PWM was discarded. Procedural details 

are previously described in  in (Megraw et al., 2009). We identified ROEs associated with 

downstream as well as upstream elements (see Supplemental Data Set 1 and Supplemental 

Methods: Analysis of Downstream Promoter Elements for details). 

Feature Set 

Sequence content information and PWMs describing TF binding sequences and their associated 

Regions of Enrichment (ROE) were used together to build a set of features describing each 

positive and negative training example. The included sequence content features were produced 

from the GC, CA, and GA content in the 200 nt windows surrounding the peak mode. See 

Supplemental Methods: Model Features for details.  

PEAT Peaks 3PEAT Model Training and Testing 

Our model uses L1-regularized logistic regression, a method which performs automatic feature 

selection by removing the least significant features in the model. We use the l1_logreg package, 

an efficient C implementation of logistic regression (Koh et al., 2007). All performance statistics 

reported here were computed from an independent test set. Cross-validation performance 

statistics are provided in Supplemental Table 3.  See Supplemental Methods: 3PEAT Model 

Training and Testing for details on the parameter selection and cross-validation procedure. 

Gene Scanning 

The final 3PEAT models (NP, BP, WP, ALL) were used to classify each nucleotide in the 8 kb 

region surrounding each PEAT tag cluster in the model’s test data set, calculating the probability 
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that this location is the mode of a TSS tag cluster. See Supplemental Methods: 3PEAT Model 

Gene Scanning Procedure for details. 

Analyses of PEAT Peak Sets 

PEAT GO analysis by peak type 

We determined the over-represented GO terms (p < 0.01) for the genes associated with each 

initiation pattern using GOstat (Beissbarth and Speed, 2004). The TAIR10 gene set was selected 

as the background set (Berardini et al., 2004). The genes expressed in the complete datasets used 

in model construction and evaluation (combined training and testing) of each initiation pattern 

(NP, WP, BP) were considered. Overrepresented GO terms which were unique to each initiation 

pattern were extracted and are shown in Supplemental Data Set 5, along with the genes 

associated to each term. 

3PEAT model feature analysis 

The model feature coefficients were extracted from the L1-Logistic Regression models using a 

modified version of the l1_logreg tool. The coefficients produced by l1_logreg are on a -1.0 – 

1.0 scale. Within a single TF feature group, the coefficients of all ROE windows with non-zero 

coefficients from both strands were averaged. Supplemental Data Set 6 contains these average 

coefficient values for all TFBSs which had at least one non-zero coefficient in the model. 

Coefficients with a value of 0.1 or greater are displayed in Figure 5 and Supplemental Figure 13. 

3PEAT Model Analysis of TATA-Less Transcription Start Sites 

TATA-Only Model 

Narrow Peak (NP) promoters classically have been strongly associated with TATA-box binding 

sequences. To test the predictive value of this element for NP promoters, we constructed a model 

containing only the TATA-box and dinucleotide sequence enrichment (GC, GA, and CA) 

features from our NP tag cluster dataset. This model was used to scan for TSS locations in the 8 

kb regions surrounding NP tag clusters. Supplemental Figure 14 compares the performance of 

the full model (labeled NP_100_PS) with this model (NP_100_PS_TATA), revealing its poor 

predictive performance. 

TATA-less Transcription Start Sites 

We queried the proportion of PEAT tag clusters in our TSS dataset used in 3PEAT model 

construction/evaluation (training and test sets were combined) that could be considered to 

contain a TATA binding site within the TATA-box Region of Enrichment. A TSS was 
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considered TATA+ if the log-likelihood score at any nucleotide within the TATA-box ROE 

exceeded a threshold reflective of a particular false positive rate (FPR) with respect to sequences 

drawn from the background nucleotide distribution. Each FPR for the TATA PWM was 

computed as described in (Megraw et al., 2013). 

Data and Software Availability 

The full dataset of mapped, annotated PEAT tag clusters is available in Supplemental Data Set 7 

and at http://megraw.cgrb.oregonstate.edu/suppmats/3PEAT. All 3PEAT model training and test 

datasets, along with the 3PEAT model classifiers and 3PEAT TFBS-Scanner toolset used in this 

project for identifying transcription factor binding sites within promoter sequences are publicly 

available as open source command line tools at 

http://megraw.cgrb.oregonstate.edu/software/3PEAT. 

Accession Numbers 

PEAT read alignments (.bam file) have been deposited in the NCBI SRA repository under 

accession number SRR1425301. 

http://megraw.cgrb.oregonstate.edu/suppmats/3PEAT
http://megraw.cgrb.oregonstate.edu/software/3PEAT
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Supplemental Data 

The following materials are available in the online version of this article. 

Supplemental Figure 1:  RNA-Seq gene expression comparison 

Supplemental Figure 2:  Distance of PEAT peak modes to TAIR10 annotated TSSs 

Supplemental Figure 3:  Sharp, well defined Regions of Enrichment for NP promoters 

Supplemental Figure 4:  Sharp, well defined Regions of Enrichment for WP promoters 

Supplemental Figure 5:  Sharp, well defined Regions of Enrichment for BP promoters 

Supplemental Figure 6:  Model Performance on Narrow Peak Modes. 

Supplemental Figure 7:  Model Performance on Broad with Peak and Weak Peak Modes. 

Supplemental Figure 8:  Model Performance on ALL Modes. 

Supplemental Figure 9:  Model Performance on Genomic Sequence Scans. 

Supplemental Figure 10:  Model performance on miRNA-proximal Modes. 

Supplemental Figure 11:  Model Performance on TAIR10 annotated TSSs. 

Supplemental Figure 12:  Model Performance on TAIR10 Genomic Sequence Scans. 

Supplemental Figure 13:  3PEAT promoter signatures, detailed for all shape models. 

Supplemental Figure 14:  Model performance with TATA-box and enrichment features 

only 

Supplemental Figure 15:  Tag cluster shape definitions 

Supplemental Figure 16:  Sampled read depth saturation analysis 

Supplemental Figure 17:  Proportions of TATA+/TATA- promoters 

Supplemental Table 1: Counts of tag clusters in each peak shape dataset used in  3PEAT 

model 

Supplemental Table 2: Comparison of the number of TATA+ vs TATA- promoters by 

PEAT TSS initiation pattern. 

Supplemental Table 3: Cross Validation Performance: auROC and auPRC statistics for 

each cross-validation fold of each 3PEAT model trained. 

Supplemental Methods: Data Set Processing and Partitioning, Model Construction, Model 

Evaluation. 

The following materials have been deposited in the DRYAD repository under accession 

number http://dx.doi.org/10.5061/dryad.r2342. 

Supplemental Data Set 1: (ROE.xlsx) Regions of Enrichment for all 3PEAT models 

Supplemental Data Set 2: Genome Scanning Results: Narrow Peak. 

Supplemental Data Set 3: Genome Scanning Results: Broad with Peak. 

Supplemental Data Set 4: Genome Scanning Results: Weak Peak. 
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Supplemental Data Set 5: (GO.xlsx) Overrepresented GO terms uniquely associated with 

NP, WP, and BP shape categories 

Supplemental Data Set 6: (LogRegCoef.xlsx) 3PEAT logistic regression coefficients for 

each model 

Supplemental Data Set 7: (3PEAT_Model_AnnotatedPeaks.xlsx) PEAT peaks complete 

dataset, and datasets for 3PEAT model training/testing 
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Tables 

Table 1.  Quality-Filtered TSS Initiation Pattern Dataset 

Dataset/Initiation Pattern Total Examples Total PEAT Reads 

Narrow Peak 1,276 (14%) 1,382,237 (19%) 

Broad With Peak 2,050 (22%) 2,665,313 (36%) 

Weak Peak 6,000 (64%) 3,330,821 (45%) 

All Protein Coding 9,326 (100%) 7,378,371 (100%) 
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Figure Legends 

 

Figure 1:  PEAT dataset examples of Narrow Peak (top), Broad with Peak (middle), and Weak Peak 

(bottom) tag clusters. The horizontal axis of each plot displays a region of genomic sequence, with 

TAIR10 cDNAs in the region displayed below the axis. The vertical axis displays the number of PEAT 

reads observed at each nucleotide location in the region. Tag cluster shape estimates are overlaid, 

providing an example of each peak shape as determined by the PEAT peak shape caller. 

Figure 2:  Diagram displays an example of a PEAT peak promoter, as considered by the 3PEAT model. 

3PEAT considers the genomic location at the mode as the TSS location for each peak. 3PEAT identifies 

sequencing observations of known promoter element binding motifs upstream, and records the high-

scoring locations for these elements. The method then uses this information for each PEAT peak as a 

data example on which to train or test the 3PEAT TSS location model. 

Figure 3:  The track in red at the top of the figure displays probability output from a representative scan 

over the region of a WP Test Set TSS using the 3PEAT WP model (this particular example shows the PEAT 

WP tag cluster, center, at Chr2:+: 15830983-15831107). The middle track in gray displays actual PEAT 

reads mapped to the genome. The bottom track in blue displays TAIR10 genes and cDNAs. The model 

successfully calls out highly probable WPs, but also other types of PEAT tag clusters present in the 

sequence being scanned. Additionally, the model frequently indicates TSS tag clusters in locations which 

are not covered by PEAT reads in our Arabidopsis root sample but agree quite precisely with pol-II gene 

transcript start sites annotated in TAIR10. 

Figure 4:  Comparison of three Regions of Enrichment (ROEs) defined by PEAT NP data (top) vs ROEs 

defined by TAIR10 data (bottom). Each colored region represents a portion of the region of enrichment 

and flanking area detected for the transcription factor. The ROEs center on different locations with 

respect to observed TSSs: MADSB (-36 vs -8), MADSA (-37 vs -9), and L1-box (-32 vs -3). ROEs are more 

pronounced and precise with PEAT data. These differences in data precision are likely to explain the 

success of the 3PEAT NP, WP, and BP models as opposed to the poor performance of the TAIR10 model 

in sequence scanning. 

Figure 5:  3PEAT model coefficients for NP and WP models, forming ‘promoter signatures’. Model 

coefficients can range from -1.0 to 1.0, only those exceeding 0.1 are displayed as part of the signature. 

Based on the model, heavily-weighted positive coefficients indicate TFs whose presence is strongly 

associated with the presence of a TSS tag cluster. 

Figure 6:  Comparison of the percentage of TATA+ vs TATA- promoters according to PEAT TSS initiation 

pattern. Here, a TATA+ promoter is a TSS peak upstream region containing a TATA-box signal within 

TATA’s Region of Enrichment (approximately -45:-25 with respect to the TSS peak mode). A TATA- 

promoter does not contain a TATA-box signal in this region. (Top) The presence of a TATA-box signal is 

decided according to a thresholded log-likelihood score that reflects a strict False Positive Rate (FPR) of 

0.0001. (Bottom) The same view is provided using a less stringent FPR for TATA-box presence. 

 




