246 research outputs found

    Probing molecular arrangements of the organic semiconductor 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene thin film at the interface by UV Resonant Raman scattering

    Get PDF
    Raman spectroscopy was employed to investigate nanometric thick films of the organic semiconductor 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene, following a comprehensive vibrational characterization of the compound condensed phases at various excitation wavelengths. UV Raman excitation enabled the characterization of the thin films, revealing that the molecular orientation at the film/air interface is characterized by a different organization and/or a high degree of disorder compared to the bulk phase. The low penetration depth of the UV Raman excitation allows for the retrieval of this information, unlike the XRD data

    Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films

    Get PDF
    Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 \ub7 104 \ub5C/Gy\ub7cm2, the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 \ub5Gy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen

    Label-free immunodetection of \u3b1-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor

    Get PDF
    The aggregation of \u3b1-synuclein is a critical event in the pathogenesis of neurological diseases, such as Parkinson or Alzheimer. Here, we present a label-free sensor based on an Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) integrated with microfluidics that allows for the detection of amounts of \u3b1-synuclein in the range from 0.25 pM to 25 nM. The lower limit of detection (LOD) measures the potential of our integrated device as a tool for prognostics and diagnostics. In our device, the gate electrode is the effective sensing element as it is functionalised with anti-(\u3b1-synuclein) antibodies using a dual strategy: i) an amino-terminated self-assembled monolayer activated by glutaraldehyde, and ii) the His-tagged recombinant protein G. In both approaches, comparable sensitivity values were achieved, featuring very low LOD values at the sub-pM level. The microfluidics engineering is central to achieve a controlled functionalisation of the gate electrode and avoid contamination or physisorption on the organic semiconductor. The demonstrated sensing architecture, being a disposable stand-alone chip, can be operated as a point-of-care test, but also it might represent a promising label-free tool to explore in-vitro protein aggregation that takes place during the progression of neurodegenerative illnesses

    Chemical Doping of the Organic Semiconductor C8-BTBT-C8 Using an Aqueous Iodine Solution for Device Mobility Enhancement

    Get PDF
    The performance of organic field-effect transistors is still severely limited by factors such as contact resistance and charge trapping. Chemical doping is considered to be a promising key enabler for improving device performance, although there is a limited number of established doping protocols as well as a lack of understanding of the doping mechanisms. Here, a very simple doping methodology based on exposing an organic semiconductor thin film to an aqueous iodine solution is reported. The doped devices exhibit enhanced device mobility, which becomes channel-length independent, a decreased threshold voltage and a reduction in the density of interfacial traps. The device OFF current is not altered, which is in agreement with the spectroscopic data that points out that no charge transfer processes are occurring. Kelvin probe force microscopy characterization of the devices under operando conditions unambiguously proves that an important reduction of the contact resistance takes place after their exposition to the iodine solution, reaching almost ohmic contact

    Large-Size Star-Shaped Conjugated (Fused) Triphthalocyaninehexaazatriphenylene

    Get PDF
    Star-shaped triphthalocyaninehexaazatriphenylene 1 was synthesized via condensation between a new building block 1,2-diaminophthalocyanine and cyclohexanehexaone. Compound 1 represents the largest star-shaped phthalocyanine-fused hexaazatriphenylene reported so far. This largely expanded phthalocyanine shows good solubility and has a strong tendency to aggregate in both solution and on surface, indicating its potential as active component in organic electronic devices.This research was financially supported by the Spanish Ministry of Economy and Competitiveness (Mineco) of Spain [CTQ2014-55798-R, CTQ2015-71936-REDT, CTQ2013-40480-R and “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496)], Generalitat Valenciana (Prometeo 2012/010), the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and by ERC StG 2012-306826 e-GAMES. A. C. acknowledges the Materials Science PhD program of UAB.Peer reviewe

    Neutral organic radical formation by chemisorption on metal surfaces

    Get PDF
    Organic radical monolayers (r-MLs) bonded to metal surfaces are potential materials for the development of molecular (spin)electronics. Typically, stable radicals bearing surface anchoring groups are used to generate r-MLs. Following a recent theoretical proposal based on a model system, we report the first experimental realization of a metal surface-induced r-ML, where a rationally chosen closed-shell precursor 3,5-dichloro-4-[bis(2,4,6-trichlorophenyl)methylen]cyclohexa-2,5-dien-1-one (1) transforms into a stable neutral open-shell species () via chemisorption on the Ag(111) surface. X-ray photoelectron spectroscopy reveals that the >C=O group of 1 reacts with the surface, forming a C-O-Ag linkage that induces an electronic rearrangement that transforms 1 to . We further show that surface reactivity is an important factor in this process whereby Au(111) is inert towards 1, whereas the Cu(111) surface leads to dehalogenation reactions. The radical nature of the Ag(111)-bound monolayer was further confirmed by angle-resolved photoelectron spectroscopy and electronic structure calculations, which provide evidence of the emergence of the singly occupied molecular orbital (SOMO) of 1

    Highly Oxidized States of Phthalocyaninato Terbium(III) Multiple‐Decker Complexes Showing Structural Deformations, Biradical Properties and Decreases in Magnetic Anisotropy

    Get PDF
    Presented here is a comprehensive study of highly oxidized multiple‐decker complexes composed of TbIII_{III} and CdIII_{III} ions and two to five phthalocyaninato ligands, which are stabilized by electron-donating n-butoxy groups. From X-ray structural analyses, all the complexes become axially compressed upon ligand oxidation, resulting in bowl-shaped distortions of the ligands. In addition, unusual coexistence of square antiprism and square prism geometries around metal ions was observed in +4e charged species. From paramagnetic 1^{1}H NMR studies on the resulting series of triple, quadruple and quintuple-decker complexes, ligand oxidation leads to a decrease in the magnetic anisotropy, as predicted from theoretical calculations. Unusual paramagnetic shifts were observed in the spectra of the +2e charged quadruple and quintuple-decker complexes, indicating that those two species are actually unexpected triplet biradicals. Magnetic measurements revealed that the series of complexes show single-molecule magnet properties, which are controlled by the multi-step redox induced structural changes

    Infrared Investigation of the Charge Ordering Pattern in the Organic Spin Ladder Candidate (DTTTF)2Cu(mnt)2

    Full text link
    We measured the variable temperature infrared response of the spin ladder candidate (DTTTF)2Cu(mnt)2 in order to distinguish between two competing ladder models, rectangular versus zigzag, proposed for this family of materials. The distortion along the stack direction below 235 K is consistent with a doubling along b through the metal-insulator transition. While this would agree with either of the ladder models, the concomitant transverse distortion rules out the rectangular ladder model and supports the zigzag scenario. Intramolecular distortions within the DTTTF building block molecule also give rise to on-site charge asymmetry.Comment: 4 pages, 4 figures, submitted to Solid State Science
    corecore