4,453 research outputs found

    Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Full text link
    Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc.) to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle\u27s pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle\u27s received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas) in the Paranaguá Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (\u3c2 km) by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second), the turtle did appear to perform dives during which it remained still on or near the sea floor during several of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management

    Alice falls into a black hole: Entanglement in non-inertial frames

    Full text link
    Two observers determine the entanglement between two free bosonic modes by each detecting one of the modes and observing the correlations between their measurements. We show that a state which is maximally entangled in an inertial frame becomes less entangled if the observers are relatively accelerated. This phenomenon, which is a consequence of the Unruh effect, shows that entanglement is an observer-dependent quantity in non-inertial frames. In the high acceleration limit, our results can be applied to a non-accelerated observer falling into a black hole while the accelerated one barely escapes. If the observer escapes with infinite acceleration, the state's distillable entanglement vanishes.Comment: I.F-S published before with maiden name Fuentes-Guridi Replaced with published version. Phys. Rev. Lett. in pres

    Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector

    Full text link
    Multiple object tracking (MOT) in urban traffic aims to produce the trajectories of the different road users that move across the field of view with different directions and speeds and that can have varying appearances and sizes. Occlusions and interactions among the different objects are expected and common due to the nature of urban road traffic. In this work, a tracking framework employing classification label information from a deep learning detection approach is used for associating the different objects, in addition to object position and appearances. We want to investigate the performance of a modern multiclass object detector for the MOT task in traffic scenes. Results show that the object labels improve tracking performance, but that the output of object detectors are not always reliable.Comment: 13th International Symposium on Visual Computing (ISVC

    Entanglement of Dirac fields in non-inertial frames

    Full text link
    We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.Comment: 15 pages, with 8 figures (Mar 2006); accepted to Physical Review A, July 2006 - slightly revise

    The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

    Get PDF
    This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented

    Spatial and temporal variation in the effects of climatic variables on Dugong calf production

    Get PDF
    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales. © 2016 Fuentes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    On the robustness of entanglement in analogue gravity systems

    Get PDF
    We investigate the possibility of generating quantum-correlated quasi-particles utilizing analogue gravity systems. The quantumness of these correlations is a key aspect of analogue gravity effects and their presence allows for a clear separation between classical and quantum analogue gravity effects. However, experiments in analogue systems, such as Bose–Einstein condensates (BECs) and shallow water waves, are always conducted at non-ideal conditions, in particular, one is dealing with dispersive media at non-zero temperatures. We analyse the influence of the initial temperature on the entanglement generation in analogue gravity phenomena. We lay out all the necessary steps to calculate the entanglement generated between quasi-particle modes and we analytically derive an upper bound on the maximal temperature at which given modes can still be entangled. We further investigate a mechanism to enhance the quantum correlations. As a particular example, we analyse the robustness of the entanglement creation against thermal noise in a sudden quench of an ideally homogeneous BEC, taking into account the super-sonic dispersion relations

    Multipeaked polarons in soft potentials

    Get PDF
    We consider a minimal coupled charge/excitation-lattice model capturing a competition between linear polaronic self-trapping and the self-focusing effects of a soft nonlinear on-site potential. The standard singlehumped polaron ceases to exist above a critical value of the coupling strength, closely related to the inflection point in the nonlinear potential. For couplings beyond this critical value, we find that successive multihumped polaronic solutions correspond to the lowest-energy stationary states of the system, which may admit interesting quantum resonance behavior.Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. University of New Mexico; Estados UnidosFil: Maniadis, P.. Université Pierre et Marie Curie; FranciaFil: Kalosakas, G.. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory; Estados UnidosFil: Rasmussen, K.. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory; Estados UnidosFil: Bishop, A. R.. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory; Estados UnidosFil: Kenkre, V. M.. University of New Mexico; Estados UnidosFil: Gaidedei, Yu B.. Bogolyubov Institute for Theoretical Physics; Ucrani

    Vitamins C and E downregulate vascular VEGF and VEGFR-2 expression in apolipoprotein-E-deficient mice

    Get PDF
    Anti-angiogenic therapy reduces both plaque growth and intimal neovascularization in apolipoprotein-E-deficient mice (apoE-/-). Vascular endothelial growth factor (VEGF) has been suggested as playing a role in the development of atherosclerosis. We examined the hypothesis that VEGF and VEGF receptor-2 (VEGFR-2) expression is upregulated in apoE-/- and, since it could be driven by oxidative stress, tested whether dietary supplementation with vitamins C and E could downregulate it.Two-month-old apoE-/- received vitamin C combined with alpha- or beta-tocopherol for 4 weeks. Aortic VEGF and VEGFR-2 expression were measured by RT-qPCR and western blot.ApoE-/- showed significantly higher expression of aortic VEGF and VEGFR-2 mRNA (P<0.001) and protein (P<0.001) than wild-type mice, as well as increased plasma VEGF (P<0.001). Vitamin C and alpha-tocopherol significantly reduced aortic VEGF and VEGFR-2 expression in apoE-/- (P<0.001), circulating VEGF (P<0.01) and plasma lipid peroxidation (P<0.01). apoE-/- receiving vitamin C and beta-tocopherol showed diminished lipid peroxidation and VEGFR-2, but only partial reduction of VEGF expression. These data demonstrate that augmented VEGF and VEGFR-2 expression in apoE-/- vasculature can be downregulated by vitamins C and E, at least partially through oxidative stress reduction. This novel mechanism could contribute to explaining the beneficial effects of antioxidant vitamins in experimental atherosclerosis
    corecore