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We consider a minimal coupled charge/excitation-lattice model capturing a competition between linear
polaronic self-trapping and the self-focusing effects of a soft nonlinear on-site potential. The standard single-
humped polaron ceases to exist above a critical value of the coupling strength, closely related to the inflection
point in the nonlinear potential. For couplings beyond this critical value, we find that successive multihumped
polaronic solutions correspond to the lowest-energy stationary states of the system, which may admit interest-
ing quantum resonance behavior.
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I. INTRODUCTION

One of the most intriguing current problems in the phys-
ics of soft matter is the understanding of the mechanisms
controlling charge and energy localization and transport in
bio- and synthetic polymers. For example, it is generally
thought that understanding these mechanisms will provide
the key to better comprehend and technologically exploit the
speed and efficiency of the important biological process of
photosynthesis[1]. Similarly, charge localization and trans-
port properties play a determining role in the more techno-
logically mature field of photogeneration and transport in
conjugated polymers[2].

The notion that effective nonlinearity due to the interac-
tion between charge or excitation and vibrational degrees of
freedom can result in structurally very stable excitations led
Davydov several decades ago to propose that solitonlike ex-
citations might be efficient agents of energy and charge
transfer in biological molecules[3,4]. While such transfer
mechanisms are conceptually appealing, subsequent work[5]
has exposed several practical flaws. Nonetheless, intrinsic
localized excitations due to interacting fields have been dem-
onstrated in strongly nonlinear materials, especially in re-
gimes where lattice discreteness and localization scales are
comparable[4,6–8].

Our aim here is to propose a more general concept, rel-
evant to a wide range ofsoft matterapplications, which is
closely related to intrinsic localization. Intrinsic localization
due to interacting degrees of freedom is well studied in the
framework of linear trapping, as, for example, found in the
Holstein model[9,10]. This may result in single- and also
multiple-humped polarons and excitons[11]. However, in
that case the single-humped polaron always exists as the
ground state of the system. In this work, we introduce the
idea of linear self-trapping with the additional effect of a
“soft” nonlinear potential. The coexistence of these two ef-
fects can produce stable polaronic multihumped complexes
as the lower-energy stationary states, which may facilitate

novel mechanisms for transport assisted by resonant tunnel-
ing [12]. We will show that the presence of softnonlinearity
in the potential plays a determining role in the existence of
the single and multihumped solutions. In particular, thein-
flection pointof the nonlinear potential determines a thresh-
old for multihumps polarons; for amplitudes below the in-
flection point, the nonlinearity is responsible for weaker
anharmonic renormalization effects.

To most clearly expose the concepts, we study here a
minimal nonlinear model to describe “softness” that admit
the above novel polaroniclike behavior. In dimensionless
units, the model can be written in terms of the coupled
Hamiltonian

H = o
n
H− Jwn

*swn+1 + wn−1d − xynuwnu2 + Vsynd

+
k

2
syn+1 − ynd2 +

1

2
Sdyn

dt
D2J , s1d

whereVsyd represent an anharmonic on-site potential of the
form

Vsyd = Dfexps− ayd − 1g2. s2d

In Eq. (1), the lattice site indexn runs from 1 toN, with N
the total number of sites,wn is the probability amplitude for
the charge/excitation located at thenth site,yn is the dimen-
sionless lattice displacement at this site,J is the dimension-
less transfer integral,k is the dimensionless lattice spring
constant, andx is the dimensionless coupling constant be-
tween the interacting fields. We consider the semiclassical
equations of motion[10,13] derived from the Hamiltonian
(1); viz., we treat the charge quantum mechanically and the
vibrational motion classically. The Schrödinger equation
then becomes
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i
dwn

dt
= − Jswn+1 + wn−1d − xynwn. s3d

Newton’s equations of motion for the displacementsyn be-
come

d2yn

dt2
= − V8synd + xuwnu2 + ksyn+1 − 2yn + yn−1d . s4d

The prime denotes differentiation with respect toyn, while t
represents dimensionless time.

We are interested here in stationary polarons where the
wave vectorwn oscillates with a frequencyv0, while the
lattice is at rest, i.e.,

wnstd = Cnexps− iv0td,
d2yn

dt2
=

dyn

dt
= 0. s5d

Polarons, in this context, become more localized and accom-
panied by larger lattice displacement when the couplingx
becomes stronger. An intuitive understanding of the interest-
ing properties of the system arises in the limit of uncoupled
lattices sites, known as the “anticontinuous limit”[11,14].
This is realized withJ=0 andk=0. In this limit, the single-
humped polaron is localized on a single lattice site, sayn0,
i.e., Cn=dn,n0

. Solving the corresponding Eq.(4), under the
condition (5), we find the lattice displacements

yn0

± = y1
± = −

1

a
ln11 ±Î1 −

2x

Da

2
2 . s6d

The stability of these twos±d solutions is determined by the
following set of equations:

drn0

dt
= 0,

dÃn0

dt
= xyn0

s1 + Ãn0

2 d,

dyn0

dt
= un0

,
dun0

dt
= − V8syn0

d + xrn0
, s7d

which have been obtained by linearizing around the solutions
(6). We have defined

Ãn0
=

Imfwn0
g

Refwn0
g
, rn0

= uwn0
u2. s8d

In these variables, the stationary single-humped polaron of
the anticontinuous limit is(we omit the notationn0 from now
on) rs=1, ẏs=us=0, ys=y1

±, Eq. (6), and the phase is arbi-
trary. The stability is determined by the eigenvalues of the
following eigenvalue problem:

10 0 0

0 0 1

x − V9sysd 0
21dr

dy

du
2 = l1dr

dy

du
2 . s9d

(The dynamics ofÃ is irrelevant, and is ignored.) Here,
V9sysd is the second derivative of the on-site potential. Di-
agonalization of this matrix yields the eigenvalues

l0 = 0, l1,2= ± Î− V9sysd. s10d

We see thaty1
+ is unstable, as a result of the positive eigen-

valuel1 [V9sy1
+d,0]. The stationary solutiony1

− is a center,
having imaginary eigenvalues[V9sy1

−d.0].
From Eq.(6), the maximum amplitude for the stabley1

−

occurs when the two solutions become equal,

y+ = y− =
ln2

a
= yinf , s11d

corresponding to the inflection point of the on-site potential,
Vsyd. In this sense, theinflection pointplays a determining
role for the existence of the stable single-humped stationary
solution, which, as long as it exists, corresponds to the
lowest-energy stationary state of the system. The stable and
unstable solutions are situated symmetrically with respect to
this point and the maximum amplitude of the stable station-
ary lattice displacementyn corresponds precisely to its value
(see Fig. 1). Qualitatively similar behavior is expected for
the stationary, more spatially extended solution of Eqs.(3)
and(4) (see below). Another important result of this analysis
is that these solutions only exist forx below a critical value
[see Eq.(6)]

x ø xc ;
Da

2
. s12d

Relaxing the condition Cn=dn,n0
, and setting Cn

=Î§dunu,n0
with §=0.5 (representing a situation with a double-

peaked polaron at the positionsn= ±n0, respectively), the
double-humped stationary solution for the amplitude in the
lattice becomes

FIG. 1. Polaron solutions at the anticontinuous limit. Left curves
represent single-humped stationary solutions while middle and right
curves represent double- and tripled-humped solutions, respectively.
Upper panel: Amplitude of stable(solid line) and unstable(dashed
line) stationary states according to Eq.(13) [for §=1 (single-
humped), §=1/2 (double-humped), and §=1/3 (triple-humped)].
Lower panel: Energy of stable(solid line) and unstable(dashed
line) stationary states. Parameters values areD=0.4, a=4.45,J=k
=0.
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y2
± = −

1

a
ln11 ±Î1 −

2x§

Da

2
2 , s13d

where the subscript 2 denotes the double-humped polaron
character of this solution. The critical value,xcs2d, of x in
this case is

xcs2d ;
Da

2§
= 2xc, s14d

with xc given by Eq.(12). This procedure can be extended to
multihumped localized solutions. The critical coupling pa-
rameterxcsmd for m-humped stationary solutions will follow
the relation

xcsmd = mxc. s15d

The results derived in the anticontinuous limit are illus-
trated in Fig. 1, which shows the amplitude and energy of the
described stationary polaronic solutions as a function ofx. It
is interesting to note from this figure that the topology of the
lowest-energy stationary state depends onx, in the sense that
once the single-humped polaron disappears, the double-
humped polaron becomes the lowest-energy stationary state,
and so on[15]. From this analysis, we expect that in the
extended model, Eqs.(3) and (4), the solution for a single
polaron will disappear above a givenx and then only station-
ary states with a larger number of humps will exist.

For departures from the anticontinuous limit, it is easy to
see that the coupling to the nearest neighbors will cause an
effective decrease in the on-site potential. This change will
move the maximum amplitude for the deformation of the
lattice such that the maximum amplitudey0 of the single-
humped stationary solution will bey0. ln2/a, i.e., greater
than yinf, but the basic scenario will be as described in the
anti-continuous limit.

We now present numerical results for the complete set of
Eqs.(3) and(4) in a case away from the anticontinuous limit.
To obtain the stationary polaron solutions, we apply the
method detailed in Ref.[16].

In Fig. 2, we see the typical shape of a single-humped
polaron solution(upper two panels) for a givenx. As pre-
dicted, we find that this stationary solution exhibits a bifur-
cation behavior depending on the coupling constantx. The
single-humped stationary solution disappears above a critical
value of the coupling parameter, and then only polarons with
two or more humps can exist. This is in agreement with the
analytical results derived at the anticontinuous limit. In Fig.
2, double-(middle two panels) and triple- (bottom panels)
humped stationary solutions are also shown.

Figure 3 shows the polaron energies as a function of cou-
pling constantx. Again we see that the topology of the
lowest-energy stationary state depends on the value ofx, for
single-, double-, and triple-humped polarons. Figure 4 shows
the maximum amplitude in the lattice as a function of cou-
pling constantx. The maximum amplitude for these multi-
humped polaron solutions is larger than the inflection point
for the on-site potential for the set of parameters used due to
the nearest neighbor interactions on the lattice.

We emphasize that the observed behavior is due to the
fact that the lattice displacements are on the soft part of the
on-site potential. For the polaron case studied here, this re-
quires a positive coupling constantx. For negative values of
x, the system does not exhibit such a succession of multi-
humped polarons[16], since there is no softness(and, there-
fore, inflection point) in the other part of the on-site potential
(for negative displacements). It is interesting that although
the system is quite far from the anticontinuous limit, the
various polarons cease to exist when distortion of the lattice

FIG. 2. Polaron solutions with one, two, and three humps. Both
lattice,yn, and charge/excitation,uCnu, are shown. The other param-
eters areD=0.4, a=4.45,J=0.005, andk=2.0.

FIG. 3. Energy as a function ofx for single-, double-, and triple-
humped stationary polaronic solutions, respectively. The parameters
are as in Fig. 2.
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of a certain amplitude is reached, regardless of the number of
humps. Further, we see that relation(15) between the critical
x values still is approximately valid for these cases.

In summary, we have considered a minimal model to de-
scribe novel polaronic effects in soft matter. Due to the co-
existence of the linear polaronic trapping and the softness of
the on-site potential, we have found that the familiar single-
hump polaron solution disappears above a critical value of
the coupling constantx. The inflection point has been shown
to play a determining role for the existence and stability of

this polaronic state, thereby providing an operational defini-
tion of “softness.” Also, we have found numerically that
multihumped polaron states can coexist for a small range of
the parameters. The structure of the lower-energy stationary
states, therefore, depends onx [15], and there are critical
values of this parameter beyond which the lowest-energy sta-
tionary state becomes a polaron with additional humps, cor-
responding to self-focusing in the nonlinear lattice potential.
We note that the standard polaronic localization allows ex-
ploration of the lattice nonlinearity(in the polaron vicinity)
and formation of the multihumped excitations if the lattice is
sufficiently soft. Even a hard nonlinear potential will admit
such excitations, but only if sufficient energy is introduced
locally [17]. Ongoing studies show a complex interaction
between the humps in a multihumped polaron structure and
the existence of charge/excitation exchange between humps
in the form of “tunneling,” similarly to Ref.[12]. These be-
haviors suggest that the introduction of an appropriate reso-
nance field may enhance the transport properties of these
novel complex solutions, providing efficient transport in soft
materials[18].

Research at Los Alamos National Laboratory is supported
by the U.S. DOE under Contract No. W-7405-ENG-36.
V.M.K. acknowledges partial support of the NSF under
Grant No. DMR-0097204. One of us(P.M.) was supported
by the European TMP program LOCNET, Grant No. HPRN-
CT-1999-00163.

[1] X. Hu et al., Q. Rev. Biophys.35, 1 2002.
[2] Primary Photoexcitations in Conjugated Polymers: Molecular

Exciton Versus Semiconductor Band Model, edited by N. S.
Sariciftci (World Scientific, Singapore, 1997); A. J. Heeger,
MRS Bull. 26, 900 (2001)

[3] A. S. Davydov, J. Theor. Biol.38, 559 (1973); 66, 379
(1977); Solitons in Molecular Systems(Reidel Publishing
Company, Boston, 1985).

[4] A. C. Scott, Phys. Rep.217, 1 (1992).
[5] P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett.55, 1235

(1985); X. D. Wang, D. W. Brown, and K. Lindenberg,ibid.
62, 1796 (1989); D. Vitali, P. Allegrini, and P. Grigolini,
Chem. Phys.180, 297 (1994); M. I. Salkolaet al., Phys. Rev.
B 52, R3824(1995).

[6] K. S. Song and R. T. Williams,Self-Trapped Exitons, 2nd ed.,
Springer Series in Solid State Sciences Vol. 105(Springer,
New York, 1996).

[7] D. M. Alexander and J. A. Krumhansl, Phys. Rev. B33, 7172
(1986); M. Barthes, G. De Nunzio, and M. Ribet, Synth. Met.
76, 337(1996); J. Edler, P. Hamm, and A. C. Scott, Phys. Rev.
Lett. 88, 067403(2002).

[8] B. I. Swansonet al., Phys. Rev. Lett.82, 3288(1999); N. K.
Voulgarakis et al., Phys. Rev. B 64, 020301 (2001); G.
Kalosakas, A. R. Bishop, and A. P. Shreve, Phys. Rev. B66,

094303(2002).
[9] T. Holstein, Ann. Phys.(N.Y.) 8, 325 (1959).

[10] G. Kalosakas, S. Aubry, and G. P. Tsironis, Phys. Rev. B58,
3094 (1998).

[11] S. Aubry, G. Abramovici, and J.-L. Raimbault, J. Stat. Phys.
67, 675 (1992).

[12] Y. B. Gaididei, P. L. Christiansen, and S. M. Mingaleev, Phys.
Scr. 51, 289 (1995).

[13] S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E
65, 061905(2002); G. Kalosakas, K. Ø. Rasmussen, and A. R.
Bishop, J. Chem. Phys.118, 3731(2003).

[14] S. Aubry, Physica D71, 196 (1994).
[15] The discussed(multihumped) polarons represent the lower-

energy stationary states of the system, but large-amplitude un-
bound nonstationary solutions can have lower energies.

[16] P. Maniadis, G. Kalosakas, K. Ø. Rasmussen, and A. R.
Bishop, Phys. Rev. B68, 174304(2003).

[17] W. Z. Wanget al., Phys. Rev. Lett.80, 3284(1998).
[18] This mechanism, similar to that of Ref.[12], is different from

the softening of a pinning mode that is responsible for en-
hanced mobility in Holstein-Hubbard many-electron systems.
See, for example, L. Proville and S. Aubry, Eur. Phys. J. B11,
41 (1999).

FIG. 4. Maximum amplitude in the lattice,y0, as a function ofx,
for the single-, double-, and triple-humped polaron solutions, re-
spectively. The parameters are as in Fig. 2.

FUENTESet al. PHYSICAL REVIEW E 70, 025601(R) (2004)

RAPID COMMUNICATIONS

025601-4


