603 research outputs found

    A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions

    Get PDF
    The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Here we propose a novel formulation for network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection in humans over time as well as to analyze a pair of ER export related screens in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Charting the parameter space of the global 21-cm signal

    Get PDF
    © 2018 The Author(s). The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link futuremeasurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks

    Cycle-centrality in complex networks

    Full text link
    Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download

    Intra-arterial hepatic fotemustine for the treatment of liver metastases from uveal melanoma: experience in 101 patients

    Get PDF
    Background: Exclusive liver metastases occur in up to 40% of patients with uveal melanoma associated with a median survival of 2-7 months. Single agent response rates with commonly available chemotherapy are below 10%. We have investigated the use of fotemustine via direct intra-arterial hepatic (i.a.h.) administration in patients with uveal melanoma metastases. Patients and methods: A total of 101 patients from seven centers were treated with i.a.h. fotemustine, administered intra-arterially weekly for a 4-week induction period, and then as a maintenance treatment every 3 weeks until disease progression, unacceptable toxicity or patient refusal. Results: A median of eight fotemustine infusions per patient were delivered (range 1-26). Catheter related complications occurred in 23% of patients; however, this required treatment discontinuation in only 10% of the patients. The overall response rate was 36% with a median overall survival of 15 months and a 2-year survival rate of 29%. LDH, time between diagnosis and treatment start and gender were significant predictors of survival. Conclusions: Locoregional treatment with fotemustine is well tolerated and seems to improve outcome of this poor prognosis patient population. Median survival rates are among the longest reported and one-third of the patients are still alive at 2 year

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    The p53 tumour suppressor inhibits glucocorticoid‐induced proliferation of erythroid progenitors

    Full text link
    Hypoxia encountered at high altitude, blood loss and erythroleukemia instigate stress erythropoiesis, which involves glucocorticoid-induced proliferation of erythroid progenitors (ebls). The tumour suppressor p53 stimulates hematopoietic cell maturation and antagonizes glucocorticoid receptor (GR) activity in hypoxia, suggesting that it may inhibit stress erythropoiesis. We report that mouse fetal liver ebls that lack p53 proliferate better than wild-type cells in the presence of the GR agonist dexamethasone. An important mediator of GR-induced ebl self-renewal, the c-myb gene, is induced to higher levels in p53(–/–) ebls by dexamethasone. The stress response to anemia is faster in the spleens of p53(–/–) mice, as shown by the higher levels of colony forming units erythroids and the increase in the CD34/c-kit double positive population. Our results show that p53 antagonizes GR-mediated ebl expansion and demonstrate for the first time that p53–GR cross-talk is important in a physiological process in vivo: stress erythropoiesis

    The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones

    Get PDF
    The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms

    Phenotype-based variation as a biomarker of sensitivity to molecularly targeted therapy in melanoma

    Get PDF
    Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to various drugs. In this study, we aimed to define a minimal signature that could be used to distinguish melanoma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG. © The Royal Society of Chemistry
    • 

    corecore