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Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to vari-

ous drugs. In this study, we aimed to define a minimal signature that could be used to distinguish mela-

noma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By

using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the

evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed

with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in

their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines

can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG.

Introduction

Melanoma is a heterogeneous tumor, as can be defined either
by mutations or by transcriptomic analyses. More than 80%
of all melanoma cells harbor a mutated gene within the
MAPK pathway, all which are mutually exclusive.1,2 Patients
with BRAF mutations are candidates for Vemurafenib, a selec-
tive BRAF inhibitor,3 and the administration of a MEK inhibi-
tor (Trametinib) in these patients has shown to increase sur-
vival time,4 demonstrating the critical function of the MAPK
pathway. In addition, close to 60% of melanomas contain mu-
tations within the CDKN2A pathway-related genes. Although
these gene mutations are also mutually exclusive within the
pathway, they overlap with MAPK-related mutations, indicat-
ing the presence of at least two distinct pathways that are
deregulated in this tumor type. However, the mutational land-
scape as defined by these and other mutations has been
reported not to correlate with phenotypes that are based on
the transcriptome of the same tumors.1,2 That gene
expression-based phenotypes reveal the existence of heteroge-

neity among melanoma tumors is a well-established fact.1,2,5–7

Current data indicates the existence of at least 3 melanoma
sub-groups as can be defined by transcriptomic analyses, with
a preferential up-regulation of either differentiation, prolifera-
tion, or immune-related genes.1,2 Personalized treatment,
such as CTLA4 and PD-1 blockade, a most promising treat-
ment for advanced melanoma,8 is likely to benefit from these
classifications as they might help design such therapy on an
individual basis.9 However, melanoma cells per se show
transcriptome-based heterogeneity when studied in vitro as
well, and this is important as it has been shown to correlate
with drug sensitivity.10 Thus, complete cure of melanoma
might have to be pursued from two directions, one based on
in vivo effects, and therefore the microenvironment of the tu-
mor cells, and the other based on in vitro defined mecha-
nisms related to drug sensitivity. Switching between pheno-
types has been observed for melanoma in vivo, as well as
in vitro, and can result in altered drug sensitivity, irrespective
of the mutational status of the melanoma cells,5,11 suggesting
that a combination treatment consisting of two drugs affect-
ing each one of the two phenotypes might be ultimately nec-
essary for efficient tumor eradication. Drug resistance has tra-
ditionally been associated with a stem-cell-like phenotype and
a more mesenchymal state, as compared to an epithelial one
in almost all tumors.12,13 The “stemness” of melanoma cells
is thought to exist in a dynamic state, as melanoma cells with
stem-cell markers have been reported to arise from cells lack-
ing these markers, stem-cell like melanoma cells might not
be required for tumor initiation, and the stem- and non-stem-
cell phenotypes can switch dynamically.7,14 Similar to the
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plasticity reported for stemness in melanoma, epithelial-to-
mesenchymal transition (EMT) has also been implied as a fac-
tor driving metastasis and causing drug resistance in mela-
noma.15,16 Thirdly, melanoma specific in vitro analyses that
have aimed to explain metastatic potential have generated
gene lists that could robustly classify melanoma cell lines into
either a “proliferative” or an “invasive” character;6,17,18

switching among these phenotypes was also shown.5,14 Metas-
tasis, drug resistance and invasion have all been attributed
both to the stem cell phenotype and to EMT and have been
observed in those classes defined by various researchers for
melanoma. In this study, we asked if there was overlap be-
tween melanoma cells classified by these various signatures
and if such melanoma subtypes would have unique responses
to targeted therapy. We also aimed to identify a minimum
number of biomarkers that could help classify melanoma
subtypes with differing drug sensitivity profiles.

Materials and methods
Cell lines and tissue culture methods

Primary melanoma cell lines used in this study were previ-
ously described.19,20 All cell lines (primary and commercial)
were incubated in humidified incubators supplied with 5%
CO2 and cultured in RPMI1640 medium supplemented with
10% FBS, 1% 10 K/10 K penicillin–streptomycin (P/S Solution,
Lonza, Basel, Switzerland) and 1% 200 mM L-glutamine (L-
Glu, Lonza, Basel, Switzerland). Two exceptions were com-
mercial cell lines Mewo and SK-MEL-28, which were cultured
in DMEM with the same supplements. Melanocytic progeny
of primary melanoma cell lines (PrMCLs) were investigated
by staining for S100, MART-1, gp100 and GD2 expression
using polyclonal rabbit anti-S100, monoclonal A-103, HMB-45
(Invitrogen, Carlsbad, CA, USA) and R-24 (a kind gift of Dr.
Aliza Adler) antibodies, and flow cytometry-based (FACS) de-
tection of HMW-MMA (CSPG4) (R&D Systems Minneapolis,
MN, USA) (Table S1†). Samples were analyzed by FACS on a
Becton Dickinson LSR II cytometer. Data analysis was
performed using FCS express V.3 (De Novo Software).

Expression profiling of INHBA and MLANA by q-RT-PCR

Quantitative profiling of INHBA and MLANA by q-RT-PCR
was done using a 7500 Real-Time PCR System (Applied Bio-
systems, Carlsbad, CA, USA) and SYBR® Green PCR Master
Mix (catalog number: 4309155, Applied Biosystems, Carlsbad,
CA). PCR reactions were run under cycling conditions
according to the manufacturer's instructions. GAPDH was
used as the endogenous control in all reactions. PCR primers
were designed using the NCBI Primer-Blast Tool (http://www.
ncbi.nlm.nih.gov/tools/primer-blast/). Primer sequences were:
MLANA_F1-ATTAAGGAAGGTGTCCTGTGCC, MLANA_R1-CAG-
CCGTGGTGTAAGAGTGG, INHBA_F1-GTTTGCCGAGTCAGGAA-
CAGC, INHBA_R1-GAAGAGCCAGACTTCTGCACG, GAPDH_F1-
AAAGGGTCATCATCTCTGCCCCC and GAPDH_R1-GGCATTGC-
TGATGATCTTGAGGCTG. Relative expression values of INHBA

and MLANA were calculated by the ddCt method as previ-
ously described.21

In vitro drug screening analyses

AZD0530, 17AAG and AZD6244 were purchased from Selleck
Chemicals. Drugs were screened on transparent 96-well-plates
in which cancer cell lines were seeded at 1000 cells per well
96 hours before cytotoxicity measurements. Drugs were scre-
ened using 10 different doses ranging from 0.001 μM to 50
μM, except 10a for which 6 different doses ranging from
0.625 μM to 20 μM were tested. All stock solutions were pre-
pared in 0.1% DMSO. IC50 values were calculated as previ-
ously described.22 Cytotoxicity was measured with CellTiter-
Glo® Luminescent Cell Viability Assay (Promega, Madison
WI, USA) after 72 hours of drug treatment.

In silico drug screening analyses

The normalized activity area or IC50 values of 24 different
commercial drugs were downloaded from the CCLE database
(https://portals.broadinstitute.org/ccle/home) for in silico drug
screening analyses.

EMT, CSC and PRO/INT/INV score calculation

EMT and CSC scores were calculated based on an R script23

(http://www.R-project.org/) which runs a principal component
analysis (PCA) with the following probeset expression values:
EMT scoring was based on probeset expression values of
E-CAD (201131_s_at) and VIM (201426_s_at); CSC scoring
used CD271 (205858_at), CD20 (228599_at, 228592_at,
217418_x_at, 210356_x_at), CD133 (204304_s_at) and ALDH1
(212224_at), all of which were previously published mela-
noma stem-cell markers.24 CCLE and primary melanoma cell
lines were classified as PRO (proliferative), INT (intermediate)
and INV (invasive) according to Pro (r) and Inv (r) values gen-
erated using the online HOPP tool and the associated gene
list.18 CCLE cell lines with a Pro (r) value of more than 0.652
and an Inv (r) value of less than 0.171 were designated as
“PRO”, those with a Pro (r) value between 0.041 to 0.630 and
an Inv (r) value between 0.254 to 0.600 were designated as
“INT” and cells with a Pro (r) value of less than −0.200 and
an Inv (r) value of more than 0.445 were designated as “INV”
cells. For primary cell lines, designations were as follows:
PRO: Pro (r) > 0.533 and Inv (r) < 0.162; INT: Pro (r): 0.186
to 0.588 and Inv (r): 0.221 to 0.581; INV: Pro (r) < 0.03 and
Inv (r) > 0.554.

Melanoma gene expression signature analyses

E-MTAB-783 and GSE36133 commercial cancer cell line
datasets were normalized separately using RMA normaliza-
tion without background correction. Differentially expressed
probesets were determined between melanoma cell lines and
other solid tumor cell lines separately in both datasets
according to p-value and fold change (FC) cutoffs, 0.0001
(Bonferroni corrected) and 4 (in either direction),
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respectively. Significant probesets common to both datasets
were determined using VENNY, “Oliveros, J. C. (2007–15), an
interactive tool for comparing lists with Venn diagrams
(http://bioinfogp.cnb.csic.es/tools/venny/index.html).” These
223 probesets constitute “gene list #1”. Standardized expres-
sion values of these probesets obtained from the C-MAP
microarray data of primary melanoma cell lines20 were used
for hierarchical clustering analysis using Euclidean distance
as the similarity metric and complete linkage as the cluster-
ing method in Cluster3.0 software. Results were visualized in
JavaTreeView. Two main clusters were generated with this ap-
proach. One of the clusters showed upregulation of genes
which were also upregulated in commercial melanoma cell
lines compared with other solid cancer cell lines. The second
cluster of primary cell lines showed upregulation of genes
that were downregulated in commercial melanoma cell lines,
when compared to other solid cancer cell lines. In the second
round of analyses, the most differentially expressed genes be-
tween two main clusters were determined using the same sig-
nificance cutoffs used in generating “gene list#1”. This
resulted in “gene list#2”. INHBA and MLANA were selected
among the most significantly differentially expressed genes
from gene list#2 for further validation of phenotypic features
of the two main clusters.

Results & discussion
1. Characterizing melanoma cell lines established from
primary tumor tissue

Melanoma cell lines derived from primary tumor tissues were
used throughout this study. Cells were initially tested for mel-
anoma markers S100, MART-1 and gp100 to differentiate
them from non-melanoma cells.20 As a further measure of
specificity, gene expression data obtained from all cell lines
via C-MAP technology was used to generate two gene lists
representing “melanoma” (MEL) and “fibroblast” (FIB) like
qualities using a previously defined algorithm.18 Gene
expression-based correlation measures obtained for mela-
noma cell lines, as well as for normal skin fibroblasts and
cancer-associated fibroblasts, show that this approach is an
effective means for separating melanoma from fibroblasts. As
shown in Fig. 1, gene expression-based analysis revealed that
only 4 out of 36 melanoma cell lines show an inverse correla-
tion with the MEL signature, while only 6 out of 65 fibro-
blasts have a FIBr value lower than 0.5. The 4 melanoma cell
lines that can be thus designated “fibroblast-like” are, how-
ever, clearly melanoma cell lines as judged by morphology.
Other primary cell lines which were negative for S100, MART-
1 or gp100, and which lacked a melanoma-like morphology,
were also identified as non-melanoma and fibroblast-like by
this analysis and were excluded from our studies (not
shown). Similar to our analyses, “fibroblast-like” cells, as de-
fined by low MELr and high FIBr values, are present in two
out of three datasets generated from melanoma primary cell
lines (Fig. S1a†). We consistently observed that such cells
grow much slower, compared to those with high MELr

scores, explaining why they are extremely rare among com-
mercially available melanoma cell lines (CMCL, Fig. S1b†).
The average daily proliferation rate of cells with low INVMELr
scores (<0.4) was 18%, compared to 65% for cells with high
INVMELr scores (>0.4); similarly, cells with low FIBr scores
(<0), had an average proliferation rate of 67%, compared to
20% for those with high FIBr scores (>0).

2. Classification of melanoma cell lines based on a
combination of three gene signatures and their relation to
drug sensitivity

Drug resistance in melanoma has been reported to associate
with qualities determined by phenotypes such as EMT,
stemness, and measures pertaining to the cell's proliferative
and invasive capacity. We evaluated each primary melanoma
cell line, as well as CMCLs, for each of these 3 qualities in
silico, to determine any overlap between these definitions,
and if one or a combination of these could be used to better
explain sensitivity to a molecularly targeted drug. For this
purpose, cells were first classified into proliferative (PRO), in-
vasive (INV) or intermediate (INT) categories using an online
algorithm based on a previously published gene list.18 Each
cell was then assigned a score corresponding to its epithelial/
mesenchymal state (EMT score), in addition to a score
reflecting how stem-like the cell was (CSC score; see
methods). Not surprisingly, only one CMCL and 3 PrMCLs
had both epithelial and CSC-like qualities, as these two phe-
notypes are expected to show mutual exclusivity (quadrant 1,
Fig. 2). Similarly, most INV cells were more mesenchymal
than epithelial, while PRO cells were more epithelial. How-
ever, while the INT group among CMCLs was mostly of a
CSC-like and mesenchymal phenotype (Q3, Fig. 2, top), the
INT group among primary melanoma cell lines had more

Fig. 1 Fibroblast/melanoma correlation plot of primary melanoma cell
lines (PrMCLs), skin fibroblasts and cancer-associated fibroblasts
(CAFs). C-MAP-based gene expression data for PrMCLs and publically
available data from skin fibroblasts (GSE11919, GSE16715, GSE21648,
GSE34309, GSE35551) and CAFs (GSE46824) were used to calculate
gene expression-based correlations to a fibroblast (FIB) and a mela-
noma (MEL) gene list. Correlation measures (Pearson's r) for each sam-
ple are shown for FIB on the x-axis and INVMEL on the y-axis (see Ma-
terials and methods for details).
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non-CSC-like and epithelial features (Q4, Fig. 2, bottom). We
analyzed if cells harboring BRAF (V600) mutations were pref-
erentially of a particular transcriptomic subtype. CSC and
EMT scores were not significantly different between mutant
and WT cells. However, the PRO scores of mutant cells were
significantly larger than that of WT cells, and the inverse was
observed for INV scores; p < 0.01 and p = 0.03, respectively.
This suggested that BRAF mutations were not a primary de-
terminant of stemness or the EMT state of cells, but were re-
lated to PRO and INV scores.

We then asked if the classification based on the combina-
tion of these three transcriptomic groups could predict drug
sensitivity better than that which could be predicted by using
the “PRO/INT/INV” classification by itself. For this purpose,
we correlated INV and PRO values obtained for melanoma
cell lines for which there was cytotoxicity data in the CCLE
database.22 The strongest direct correlation between PRO
values and simultaneous negative correlation with INV values
was observed for cytotoxicity data from two MEK inhibitors,
AZD6244 and PD0325901, in line with the correlation of these
phenotypes with BRAF mutation status. The exact opposite
pattern was observed most prominently for three other drugs,
the HSP90 inhibitor 17-AAG, the SRC-inhibitor AZD0530, and

a cMET inhibitor PF-2341066 (Table S2†). As HSP90 and MEK
inhibitors have previously been shown to affect opposite phe-
notypes,25 and similar findings exist for SRC and MEK inhibi-
tor combinations,10 we decided to focus on 17AAG, AZD6244
and AZD0530. We first determined in silico how melanoma
cells, as defined by the combination of 3 scores, behaved in
response to these drugs and whether this classification would
help improve on the PRO/INT/INV classification. As shown in
Fig. 3, PRO cells were primarily sensitive to the MEK inhibi-
tor AZD6244, while INV cells were to 17AAG (HSP90 inhibitor)
and AZD0530 (SRK inhibitor). By further classifying cells into
quadrants based on the added EMT and stemness score, we
were unable to identify a subpopulation that was more sensi-
tive to any of the three drugs tested, with the most resistant
and sensitive groups identified based on quarters showing
similar values to those obtained for PRO, INT and INV groups
(Fig. 3). This indicates that classifying cells based on a com-
bination of EMT and CSC markers is able to identify distinct
cell populations that differ in their chemosensitivity profiles,
but does not help identify cells that are more sensitive to
these drugs, compared to the classification generated by the
PRO/INV score.

Next, we wanted to validate the in silico cytotoxicity corre-
lations in vitro using PrMCLs. In contrast to what we ob-
served for CMCLs, PRO, INT and INV groups were not as
clearly separated into quadrants in analyses of PrMCLs
(Fig. 2). Most PRO cells were observed in Q4 (epithelial and
non-CSC-like), together with INT cells, while INV cells were
present in quarters 1, 2 and 3, which is a different distribu-
tion compared to the classification we observed for CMCLs.
Cytotoxicity profiles of PrMCLs, however, were quite different
between Q-based and PRO/INV-based classes (Fig. 4). For 17-
AAG, although INV cells were the most sensitive, INT cells
were generally more resistant than PRO cells. A single cell
tested in Q2 was the most sensitive, supporting this observa-
tion. For AZD6244, PRO and Q4 cells were relatively sensitive.
Although a single cell in Q2 was also sensitive, as this is a
sole observation, we do not think it indicates an exception.
AZD0530, similar to its in silico data, did not show much vari-
ation among groups, although INV cells and that in Q2 were
somewhat more sensitive. We then tested a novel drug 10a,
that has been shown to be a specific SRC inhibitor.26 10a was
effective in particular on PRO cells and those in Q4 (epithe-
lial, non-CSC-like), but also on cells in Q2 (mesenchymal,
CSC-like) (Fig. 4). There were no statistically significant dif-
ferences among either quadrant or PRO/INV-based classes for
17AAG and AZD0530 IC50 values. However, there were signifi-
cant differences for AZD6244 between Q3 vs. Q4 (p = 0.03,
t-test), and for 10a, in quadrant based (p = 0.026) or PRO/
INT/INV based (p < 0.001) classifications as identified by
1-way ANOVA. This observation reveals that PRO/INV-based
and quadrant-based classifications are distinct, in that the
cells categorized by both differ in their responses to targeted
therapy, especially to the SRC inhibitor 10a. Interestingly, the
sensitivity profile of 10a is the complete inverse of that ob-
served for AZD0530. Our data shows that SRC inhibition by

Fig. 2 Clustering melanoma cell lines based on different molecular
signatures. Distribution of CMCLs (top) and PrMCLs (bottom),
categorized into PRO, INV or INT groups according to an EMT score (X
axis) and stemness score (Y axis). E: epithelial, M: mesenchymal
phenotype. CSC: cancer stem-cell-like phenotype, non-CSC: non-
cancer-stem-cell-like phenotype. Cells are shown distributed into 4
quadrants: Q1: E and CSC-like, Q2: M and CSC-like, Q3: M and non-
CSC-like, and Q4: E and non-CSC-like.
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10a exhibits a profile almost identical to that of AZD6244 for
PrMCLs (Fig. 4). As MEK and SRC are shared in most path-
ways, this suggests the SRC-MAPK pathway is active and re-
sponsible for growth primarily in PRO cells and those in
quarters 2 and 4. AZD0530 shows minimal activity in both
CMCLs and PrMCLs at the concentrations tested and does
not happen to have distinctly different effects on subgroups
of melanoma. That its activity profile is different from 10a
suggests either that AZD0530 is unable to inhibit SRC in
these cells or that 10a is inhibiting a non-SRC protein.

We also compared cytotoxicity responses among cells with
and without BRAF mutations. We did not observe any signifi-
cant differences in IC50 values for any of the drugs tested be-
tween the two groups, although BRAF mutant cells were gen-

erally more sensitive to the MEK inhibitor AZD6244 (data not
shown).

3. MLANA and INHBA as biomarkers of molecularly targeted
drug sensitivity in melanoma

All phenotypical categorizations described thus far are based
on the evaluation of a relatively large number of genes. How-
ever, as the various categories defined by the three different
phenotypical markers generate clusters with similar drug sen-
sitivity profiles, we argued that such profiles could be
reflected by a much smaller number of gene expression pat-
terns. As a number of genes used in these classifiers are re-
lated to differentiation markers of melanoma, as a discovery
strategy, we sought to identify genes whose expression could
differentiate melanoma from non-melanoma tumors by com-
paring gene expression profiles of tumors within E-MTAB-783
and GSE36133 datasets. 223 probesets with a Bonferroni
corrected p value of 0.0001 or below and a difference of more
than 4 fold that were common to both datasets were used to
cluster PrMCLs in silico (Fig. S2†). This analysis revealed two
distinct clusters (A and B) which were then used to discover
genes that were most differentially expressed between these
two clusters (Fig. S2†). MLANA and INHBA were selected as
representatives of the most upregulated genes in each of the
two distinct clusters, especially since they have been reported
to identify opposite phenotypes in melanoma: MLANA is criti-
cal for the regulation of mammalian pigmentation,27 while
INHBA is reported to decrease melanin content of B16 mu-
rine melanoma cell lines.28 Furthermore, INHBA is a member
of the transforming growth factor superfamily which induces
a mesenchymal phenotype by increasing N-cadherin expres-
sion in esophageal carcinoma cell lines.29 These two genes
are inversely expressed in both commercial and PrMCLs (Fig.
S3†). Although most INHBA expressing cells are low
expressors of MLANA and vice versa (thus in quadrants 1 and
3, Fig. S4†), there are cells that express both or neither. Both
genes have been reported to show a strong correlation be-
tween mRNA and protein levels;17,30 we therefore believe the

Fig. 3 In silico cytotoxicity analyses of molecularly targeted drugs on CMCLs. CMCLs clustered in quadrants 2, 3, and 4 (as indicated in Fig. 2) as
well as according to the PRO/INV classification were analyzed for sensitivity against the shown drugs. Cytotoxicity is shown as normalized activity
area (Y axis). 1-Way ANOVA-based analysis of quadrant-based classification of cells gave p values of 0.07, 0.034 and 0.05 for 17AAG, AZD6244 and
AZD0530, respectively, while the same statistical analysis for PRO, INT and INV groups generated p values of 0.025, 0.023 and 0.03 for 17AAG,
AZD6244 and AZD0530, respectively. Q2: M and CSC-like, Q3: M and non-CSC-like, and Q4: E and non-CSC-like.

Fig. 4 In vitro cytotoxicity analyses of molecularly targeted drugs on
melanoma cell lines. CMCLs and PrMCLs clustered in quadrants 2, 3,
and 4 (Fig. 2) as well as according to the PRO/INV classification were
analyzed for sensitivity against the shown drugs. Cytotoxicity is shown
as log IC50 (Y axis). Q2: M and CSC-like, Q3: M and non-CSC-like, and
Q4: E and non-CSC-like.
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mRNA-based phenotype should be reflected at the protein
level as well. As expected, MLANA and INHBA mRNA expres-
sion correlated tightly with MITF and AXL, two genes that are
known to play critical roles in phenotype switching in mela-
noma31,32 (Fig. S5†). In line with BRAF mutations not corre-
lating with previously reported transcriptomic signatures for
melanoma, the BRAF mutation status of cells does not seem
to correlate with MLANA or INHBA either (Fig. S4†).

We observed that MLANA and INHBA expression-based
classification was successful in revealing drug sensitivity dif-
ferences for both CMCLs and PrMCLs: we combined cells in
Q2, 3 and 4 as their sensitivity profiles were similar. We then
compared their sensitivity to cells within Q1 (MLANA-high,
INHBA-low). This revealed the expected trends for all three
drugs. In silico analysis showed that Q1 cells (MLANA-high,
INHBA-low) were relatively sensitive to AZD6244 (MEK inhibi-
tor), while they were relatively resistant to 17AAG (HSP90 in-
hibitor) and AZD0530 (SRC inhibitor), compared to cells in
Q2, 3, 4 (Fig. 5). We then validated these findings in vitro for
PrMCLs and included the SRC inhibitor 10a in our analysis.
As shown in Fig. 6, AZD6244 and 10a are both more effective
on Q1 (MLANA-high, INHBA-low) cells, while 17AAG and
AZD0530 showed the exact opposite trend. The differential ef-
fect of AZD6244 was statistically significant. To test if the
cells that were resistant to AZD6244 were also sensitive to 17-
AAG or 10a, we plotted the drug sensitivity profiles of cells
for either of the two drugs. This analysis, however, revealed
that while half of either CMCLs or PrMCLs followed this pat-
tern, about a quarter were sensitive to both, and another
quarter of the cells were resistant to both drugs analyzed
(Fig. S6†). As previously observed, the sensitivity profiles of
10a and AZD6244 were highly similar (Fig. S6c†). We there-
fore conclude that phenotyping based on MLANA and INHBA
will be able to identify cells that are sensitive to either
AZD6244/10a or 17AAG, in about 50% of the cells tested. 25%
of cells will be sensitive to both drugs, and a quarter might
be resistant to both.

Discussion

Plasticity of stemness, EMT and INV/PRO phenotypes in mel-
anoma are clearly related to changes in the signaling pathway
choices of these cells. We hypothesized that different mela-
noma cells, as characterized by gene expression profiles

Fig. 5 MLANA–INHBA-based drug sensitivity analysis of CMCLs. In silico cytotoxiciy analysis of CMCLs against 3 molecularly targeted drugs. Cells
contained within quadrants identified in Fig. S3† are indicated. P values (t-test) for 17AAG, AZD0530 and AZD6244 are 0.26, 0.0002 and 0.13, re-
spectively. Q1: E and CSC-like, Q2: M and CSC-like, Q3: M and non-CSC-like, and Q4: E and non-CSC-like.

Fig. 6 MLANA–INHBA-based drug sensitivity analysis of PrMCLs. In
vitro cytotoxiciy analysis of PrMCLs against 4 molecularly targeted
drugs. Cells contained within quadrants identified in Fig. S3† are
indicated. P values (t-test) for 10a, 17AAG, AZD6244, and AZD0530 are
0.1, 0.43, 0.01 and 0.32, respectively. Q1: E and CSC-like, Q2: M and
CSC-like, Q3: M and non-CSC-like, and Q4: E and non-CSC-like.
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reported to relate to distinct phenotypes, would primarily rely
on one particular signaling pathway which could be blocked
by one of the drugs generated to target specific signaling
pathways. We also hypothesized that the various phenotypes
defined for melanoma could overlap. Despite the limited
number of cell lines used here, we have been able to support
our second hypothesis, as we were able to show that cells
grouped by utilizing multiple gene lists are not necessarily
better characterized in terms of their drug sensitivity profiles,
compared to using any given one. If each of these different
phenotypes arises due to the utilization of a distinct pathway,
then the phenotypic switch should relate to a shift in the sig-
naling pathways the cell uses, resulting in altered drug sensi-
tivity to a molecularly targeted drug. In line with this argu-
ment, we were able to generate partial support for our first
hypothesis: although we were able to identify distinct drugs
that were more effective on cells as defined by a given pheno-
type, and that drugs that target different molecules within
the same pathway show similar outcomes (shown for 10a and
AZD6244), we observed that drugs showing opposite correla-
tions with a given phenotype (AZD6244 or 10a versus 17AAG)
did not necessarily have mutually exclusive actions on cells.
This is in contrast to the fact that the biomarkers identifying
these cells are almost mutually exclusive (MLANA and
INHBA). The explanation for this could be that mRNA-based
biomarkers, however good they may be in identifying cells
with homogenous transcriptomic phenotypes, are not neces-
sarily identifying cells that utilize the same survival pathways.
This discrepancy could then likely be due to the fact that si-
multaneous but distinct pathways are active in a given cell
and they have to be targeted at the same time for effective
control of cell growth. Despite not being statistically signifi-
cant, the similarity in sensitivity profiles we observe for
17AAG and AZD0530, two drugs that target non-overlapping
signal pathways, support this line of thought. It is possible
that the ultimate aim of the cell is to alter its transcriptomic
profile, generating a given functional phenotype. If various
pathways can be utilized for this purpose, then the cell will
use one out of the several ones possible. On the other hand,
the fact that melanoma cells that develop resistance to BRAF
inhibitors re-activate the MAPK pathway suggests there are
situations where the cell relies solely on one pathway.33

Targeted therapy via agents like Dabrafenib (BRAF inhibi-
tor) and Trametinib (MEK inhibitor) significantly increase
overall survival of metastatic melanoma patients with BRAF
V600E or V600K mutations.34,35 That MEK and RAF inhibitor
cytotoxicity profiles are similar according to our in silico anal-
ysis is also supportive of this. One reason we could not corre-
late BRAF mutations to sensitivity to the drugs tested here
could be the limited number of mutant cells we studied. This
is supported by the fact that BRAF V600 mutant cells have
much higher PRO scores compared to INV scores, and the
fact that PRO/INV scores do correlate with drug sensitivity,
especially to that of the MEK inhibitor AZD6244. However,
melanoma subclasses as defined by transcriptomic analyses
cannot be explained based on their mutational profile.1,2 It is

therefore likely that a simple classification based on MLANA
and INHBA can help identify tumors that will benefit from
one of the drugs analyzed in this study more by itself or in
combination with mutation information.

Conclusions

Our results indicate that melanoma cells are possibly utiliz-
ing multiple survival pathways and that the best personalized
treatment approach will be one that first reveals the signaling
pathways critical for the survival in each cell, followed by the
utilization of a drug or a combination of drugs that can tar-
get all of these pathways at once. Our data shows that a pro-
filing based on gene expression testing of only MLANA and
INHBA is as capable of classifying in vitro responses to mo-
lecularly targeted drugs. Larger validation experiments in vivo
and tests of drug synergy will need to be performed to con-
firm this observation.

Abbreviations

CCLE Cancer Cell Line Encyclopedia
C-MAP Connectivity map
CMCL Commercial melanoma cell line
CSC Cancer stem cell
EMT Epithelilal to mesenchymal transition
FIB Fibroblast
INHBA Inhibin beta A
INT Intermediate
INV Invasive
MEL Melanoma
MLANA Melan-A
PrMCL Primary melanoma cell line
PRO Proliferative
Q Quadrant
RMA Robust multi-array average
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