758 research outputs found

    Scaling up MIMO Radar for Target Detection

    Get PDF
    This work focuses on target detection in a colocated MIMO radar system. Instead of exploiting the »classical' temporal domain, we propose to explore the spatial dimension (i.e., number of antennas M) to derive asymptotic results for the detector. Specifically, we assume no a priori knowledge of the statistics of the autoregressive data generating process and propose to use a mispecified Wald-type detector, which is shown to have an asymptotic χ-squared distribution as M → ∞. Closed-form expressions for the probabilities of false alarm and detection are derived. Numerical results are used to validate the asymptotic analysis in the finite system regime. It turns out that, for the considered scenario, the asymptotic performance is closely matched already for M ≥ 50

    The reinforcing influence of recommendations on global diversification

    Get PDF
    Recommender systems are promising ways to filter the overabundant information in modern society. Their algorithms help individuals to explore decent items, but it is unclear how they allocate popularity among items. In this paper, we simulate successive recommendations and measure their influence on the dispersion of item popularity by Gini coefficient. Our result indicates that local diffusion and collaborative filtering reinforce the popularity of hot items, widening the popularity dispersion. On the other hand, the heat conduction algorithm increases the popularity of the niche items and generates smaller dispersion of item popularity. Simulations are compared to mean-field predictions. Our results suggest that recommender systems have reinforcing influence on global diversification.Comment: 6 pages, 6 figure

    Massive MIMO radar for target detection

    Get PDF
    Since the seminal paper by Marzetta from 2010, the Massive MIMO paradigm in communication systems has changed from being a theoretical scaled-up version of MIMO, with an infinite number of antennas, to a practical technology. Its key concepts have been adopted in the 5G new radio standard and base stations, where 64 fully-digital transceivers have been commercially deployed. Motivated by these recent developments, this paper considers a co-located MIMO radar with MT transmitting and MR receiving antennas and explores the potential benefits of having a large number of virtual spatial antenna channels N=MTMR. Particularly, we focus on the target detection problem and develop a robust Wald-type test that guarantees certain detection performance, regardless of the unknown statistical characterization of the disturbance. Closed-form expressions for the probabilities of false alarm and detection are derived for the asymptotic regime N→∞. Numerical results are used to validate the asymptotic analysis in the finite system regime with different disturbance models. Our results imply that there always exists a sufficient number of antennas for which the performance requirements are satisfied, without any a-priori knowledge of the disturbance statistics. This is referred to as the Massive MIMO regime of the radar system

    Activity size distribution of radioactive nuclide 7Be at different locations and under different meteorological conditions

    Get PDF
    The activity size distributions of the natural radionuclide tracer 7Be in different size fractions (9.0 μm) were determined at different site places in Northern Italy. Samplings were carried out during the four different seasons of the year 2011. The aim of this work was to define any differences due to the different environments and different meteorological conditions and clarify the main parameters influencing the activity size distribution of radioactive aerosols

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    Assessing Code Authorship: The Case of the Linux Kernel

    Get PDF
    Code authorship is a key information in large-scale open source systems. Among others, it allows maintainers to assess division of work and identify key collaborators. Interestingly, open-source communities lack guidelines on how to manage authorship. This could be mitigated by setting to build an empirical body of knowledge on how authorship-related measures evolve in successful open-source communities. Towards that direction, we perform a case study on the Linux kernel. Our results show that: (a) only a small portion of developers (26 %) makes significant contributions to the code base; (b) the distribution of the number of files per author is highly skewed --- a small group of top authors (3 %) is responsible for hundreds of files, while most authors (75 %) are responsible for at most 11 files; (c) most authors (62 %) have a specialist profile; (d) authors with a high number of co-authorship connections tend to collaborate with others with less connections.Comment: Accepted at 13th International Conference on Open Source Systems (OSS). 12 page

    Reducible means and reducible inequalities

    Get PDF
    It is well-known that if a real valued function acting on a convex set satisfies the nn-variable Jensen inequality, for some natural number n2n\geq 2, then, for all k{1,,n}k\in\{1,\dots, n\}, it fulfills the kk-variable Jensen inequality as well. In other words, the arithmetic mean and the Jensen inequality (as a convexity property) are both reducible. Motivated by this phenomenon, we investigate this property concerning more general means and convexity notions. We introduce a wide class of means which generalize the well-known means for arbitrary linear spaces and enjoy a so-called reducibility property. Finally, we give a sufficient condition for the reducibility of the (M,N)(M,N)-convexity property of functions and also for H\"older--Minkowski type inequalities
    corecore