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ABSTRACT

This work focuses on target detection in a colocated MIMO

radar system. Instead of exploiting the “classical’ temporal

domain, we propose to explore the spatial dimension (i.e.,

number of antennas M ) to derive asymptotic results for the

detector. Specifically, we assume no a priori knowledge of

the statistics of the autoregressive data generating process and

propose to use a mispecified Wald-type detector, which is

shown to have an asymptotic χ-squared distribution as M →
∞. Closed-form expressions for the probabilities of false

alarm and detection are derived. Numerical results are used

to validate the asymptotic analysis in the finite system regime.

It turns out that, for the considered scenario, the asymptotic

performance is closely matched already for M ≥ 50.

1. INTRODUCTION

The first task of any multiple antenna radar system is to de-

cide in favour of one of the two alternative hypotheses: H0)
the target is absent; H1) the target is present. Given the ob-

servation vector xk ∈ CN collected by the antenna array at

time k, this detection problem can be formulated as a binary

hypothesis test (HT):

H0 : xk = ck k = 1, . . . ,K
H1 : xk = αv + ck k = 1, . . . ,K

(1)

where ck ∈ CN is the clutter contribution. The signal of

interest is αv, which is composed of a known vector v ∈
CN (called steering vector) and a deterministic, but unknown,

scalar α ∈ C. To discriminate between H0 and H1, we must

define a detector Λ(X) with X , [x1| . . . , |xK ] and then per-

form a test Λ(X)
H1

≷
H0

λ. In radar applications, λ is usually

chosen to maintain the probability of false alarm (PFA) be-

low a pre-assigned level, say PFA. Hence, λ is computed as:

Pr {Λ(X) > λ|H0} = PFA. (2)

Solving the above equation is not an easy task. Moreover, the

solution depends on Λ(X) and on the statistical data model;

that is, on the joint probability density function (pdf) pX(X).
Since α in (1) is deterministic, pX(X) is fully defined by

the pdf pC(C) of the clutter with C = [c1| . . . |cK ]. In

radar applications, the clutter contributions at different time

instants are usually modelled as i.i.d. random vectors such
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that pC(C) =
∏K

k=1 pCN (ck). In these circumstances, two

popular choices for Λ(X) are the generalized likelihood ra-

tio (GLR) ΛGLR(X) test and the Wald test ΛW(X) ([1, Ch.

9], [2, Ch. 11]). The popularity of both detectors is due to

the fact that, under the hypothesis H0 and K → ∞, their

pdfs converge to a central χ-squared pdf with 2 degrees of

freedom [3,4]. Hence, (2) is asymptotically satisfied by λ̄ =
−2 lnPFA. This is a particularly simple result that has re-

ceived a lot of attention in the literature. However, it relies on

two simplifying assumptions:

1. The target parameter α and the functional form of pCN

maintain constant over the observation interval.

2. The pdf pCN is perfectly known.

These two assumptions make the asymptotic analysis of

ΛGLR(X) and ΛW(X) analytically tractable, but they are not

realistic in practice.

The main objective of this work is to develop a detector

that does not rely on both assumptions while achieving the

same simple asymptotic result illustrated above. Firstly, we

assume K = 1 and exploit the spatial (instead of tempo-

ral) dimension N for the asymptotic analysis. This allows

us to entirely drop the first assumption above. Observe that

α remains constant over the array, while it may change over

time. Secondly, we use the misspecification theory developed

by Huber and White in their seminal papers [5,6] (see also

[7]) to dispense from the knowledge of the true pCN . This is

achieved by assuming a simpler, but misspecified, pdf of the

clutter model. Note that, unlike the classical temporal-based

approach, the sample collected along the array cannot be con-

sidered as i.i.d. measurements; that is, a correlation structure

has to be taken into account. Hence, the asymptotic analysis

requires to use more advanced statistical tools such as those

developed in [8–10]. By putting together these different the-

ories and tools we show that, under a general autoregressive

assumption for the clutter generating process, it is possible to

derive a misspecified Wald-type (MW) test whose asymptotic

pdf under H0 is a central χ-squared distribution irrespective

of the true, but unknown, clutter pdf. The pdf of the proposed

MW test under H1 is also derived in closed form. Theoretical

results will be also validated through simulations by assuming

as clutter model an AR(1) driven by t-distributed innovations.

We observe that the target detection problem in large-

scale radar system has been also recently discussed in [11–

13]. Specifically, random matrix tools are used to get asymp-

totic results for the adaptive normalized matched filter for the
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regime in which both M and K go to infinity with a non-

trivial ratio M/K = c. This is much different from this work

where the temporal dimension K is kept fixed.

2. SYSTEM MODEL

Consider a colocated MIMO radar system equipped with M
transmitting elements and M receiving elements [14]. With-

out loss of generality, we assume a transmitting and e receiv-

ing uniformly linear arrays (ULAs) of M omnidirectional an-

tennas with dT and dR element separation and a single nar-

rowband target impinging from the angle φ. This array ge-

ometry implies a transmitting and receiving steering vector of

the form aT (φ) = [1, ej2π
dT
λ sinφ, . . . , ej2π

dT
λ (M−1) sinφ]T

and aR(φ) = [1, ej2π
dR
λ sinφ, . . . , ej2π

dR
λ (M−1) sinφ]T , re-

spectively. The transmitted signals are obtained from M or-

thogonal baseband waveforms through a linear transforma-

tion with W ∈ CM×M . Then, the matrix X ∈ CM×M at the

output of the matched filter, for a particular range-Doppler

cell, is given by:

X = αaR(φ)a
T
T (φ)W +C (3)

where C ∈ CM×M is the disturbance matrix. In vector form,

we have that

C
N ∋ x = vec (X) = αv + c (4)

where N = M2 and v = (WT
aT (φ)) ⊗ aR(φ). Notice

that (4) is in the same of (1) when K = 1. Note that a MIMO

radar provides more degrees of freedom compared to a phased

array for which we would have N = M .

As mentioned earlier, a crucial prerequisite for any radar

inference task is the modelization of the clutter contribution

c , [c1, . . . , cN ]T . In this paper we model it according to a

stationary autoregressive model of order 1, denoted as AR(1)
as done, e.g., in [?]. Note that, in literature, autoregressive

models has been expensively used to characterize the tempo-

ral correlation (see e.g. [15,16], [17, Ch. 2]). A stationary

AR(1) process is a discrete-time random process such that:

cn = ρcn−1 + wn, n ∈ (−∞,∞) (5)

where the one-lag correlation coefficient ρ = ρR + jρI =
|ρ|ej2πν satisfies |ρ| < 1 and {wn : ∀n} is the so called

innovation process. We assume that {wn : ∀n} are circu-

larly symmetric independent and identically distributed (i.i.d.)

complex random variables with finite second-order moments

[18,19] such that wn ∼ pw and E{|wn|2} = σ2 < ∞, for all

n. The joint pdf of c is given by

pCN (c) = pc1(c1)
∏N

n=2
pw(cn − ρcn−1) (6)

and depends on the unknown pdf pw of the innovations

{wn : ∀n}. The autocorrelation function (ACF) of the

AR(1) process in (5) is given by R[m] = σ2

1−|ρ|2 ρ
|m| and

S(ν) = σ2
∣
∣1− ρe−j2πν

∣
∣
−2

is the relative power spectral

density [20]. In practice, an AR(1) is used for modelling a

directional clutter; that is, a clutter whose power is focused

on a particular angular direction specified by the phase of the

complex one-lag correlation coefficient ρ.

Most of the literature assumes that pw is Gaussian for the

sake of mathematical tractability. However, this is not the

case in practical radar systems where heavier-tailed models,

such as the t-distribution, are more appropriate [21]. As a

consequence, the performance of a detection algorithm de-

rived under Gaussian assumption are no longer reliable when

the actual innovations that generates the clutter share a non-

Gaussian distribution. Motivated by this consideration, we

propose a Wald-type detection algorithm derived under Gaus-

sian assumption, but with the property of having reliable and

predictable performance under any pw.

3. HT UNDER MODEL MISSPECIFICATION

The results of this paper builds upon the following assumption

that characterizes a particular misspecification model.

Assumption 1 (Misspecified gaussianity). We assume that

{cn : ∀n} in (5) is an AR(1) model driven with

fw(wn) = (πσ2
w)

−1e−|wn|
2/σ2

w . (7)

The true, but unknown, pdf pw is left unrestricted, except for a

constraint on the finiteness of its second-order moments [18,

19]; that is, wn ∼ pw and E{|wn|2} = σ2 < ∞, ∀n.

For notational convenience, we denote α = [αR, αI ]
T

the real representation of α and call γ = [ρR, ρI , σ
2]T the

nuisance vector. Then, we define

θ ,
[
αT ,γT

]T
(8)

any tentative parameter vector, while θ̄ stand for the true pa-

rameter vector underlying the data generating process.

Under Assumption 1, the misspecified pdf of the data vec-

tor x in (4) has the parametric form fXN (x; θ) = fCN (x −
αv;γ) where fCN (ck;γ) is the misspecified parametric clut-

ter pdf. The following proposition provides us with its closed-

form expression (the proof can be found in Section 7).

Proposition 1. If Assumption 1 holds true, fXN (x; θ) can be

explicitly expressed as:

fXN (x; θ) = g(x1|µ1, s)
∏N

n=2
g(xn|µn, θ5) (9)

where the functional form of g is g(x|µ, s) = 1
πse

− |w−µ|2

s

with µ ∈ C and s ∈ R+ given by

µ1 = (θ1 + jθ2)v1

µn = (θ1 + jθ2)(vn − (θ3 + jθ4)vn−1) + (θ3 + jθ4)xn−1



for n = 1, . . .N and s = θ5
1−θ2

3−θ2
4

where θi indicates the i-th

entry of the parameter vector θ with dim(θ) = 5.

Once fXN (x; θ) is computed, the next step is the im-

plementation of a detector whose asymptotic distribution as

N → ∞ can be computed. A solution might be the adoption

of a misspecified GLR (M-GLR) statistic, given by

ΛM−GLR(x) , 2 ln

(

fXN (x; θ̂)

maxγ fXN (x; [0
T
2 ,γ

T ]T )

)

(10)

with θ̂ being the misspecified ML (M-ML) estimate of θ̄ [7]:

θ̂ = argmax
θ

fXN (x; θ), x ∼ pXN . (11)

However, in [22, Theo. 3.1], Kent proved (for the i.i.d. case)

that the asymptotic distribution of ΛM−GLR(x) depends on

both the true pXN and assumed fXN data pdfs and conse-

quently, it cannot be used to solve (2) in practice. Hence, the

question is: is it possible to find a detector whose asymptotic

distribution is independent of the true, but unknown, data pdf

pXN ? The answer is positive, and the resulting detector is a

misspecified Wald test. This is addressed in the following.

4. MAIN RESULTS

As a prerequisite for the definition of the misspecified Wald

(MW) test, we need to introduce some notation and, more

importantly, to study the asymptotic properties of the MML

estimator in (11) under dependent data. Following [10], we

introduce

R
5×5 ∋ H1(θ̄) , ∇T

θ s1(θ̄) (12)

R
5×5 ∋ Hn(θ̄) , Epxn|xn−1

{
∇T

θ sn(θ̄)|xn−1

}
(13)

for n = 2, . . . , N where

s1(θ) , ∇θ ln g(x1|µ1(θ), s(θ)) (14)

sn(θ) , ∇θ ln g(xn|µn(θ, xn−1), θ5) (15)

are the score vectors while g(·) has been defined in Proposi-

tion 1. Under Assumption 1 closed form expressions of the

above quantities can be computed as shown in Sections 8 and

9. We also define

Cθ̄ , A
−1
θ̄

Bθ̄A
−1
θ̄

(16)

with

Aθ̄ ,
1

N

N∑

n=1

EpXN

{
Hn(θ̄)

}
(17)

Bθ̄ ,
1

N

N∑

n=1

EpXN

{
sn(θ̄)s

H
n (θ̄)

}
. (18)

Next, we provide the main results of this work for the asymp-

totic regime where M → ∞. Clearly, this implies that N →
∞ since N = M2 by definition.

4.1. Asymptotic analysis of the MML estimator

The asymptotic properties of the MML estimator in (11) are

as follows.

Theorem 1. If Assumption 1 holds true, the MML estimator

θ̂ in (11) is consistent, i.e. θ̂
a.s.→

M→∞
θ̄, and asymptotically

normal, i.e.
√
NC

−1/2

θ̄
(θ̂ − θ̄) ∼

M→∞
N (0, I5) . (19)

Moreover, we have that

AN (θ̂) ,
1

N

N∑

n=1

Hn(θ̂)
pXN→

M→∞
Aθ̄ (20)

BN (θ̂) ,
1

N

N∑

n=1

sn(θ̂)s
H
n (θ̂)

pXN→
M→∞

Bθ̄. (21)

such that a direct application of the Slutsky’s Lemma yields

CN (θ̂) , A
−1
N (θ̂)BN (θ̂)A−1

N (θ̂)
pXN→

M→∞
Cθ̄. (22)

Proof. The proof follows from the results obtained in [8,9]

and [10, Theo. 2.1].

The main implications of Theorem 1 can be summarized

as follows. If the true data generating process is a station-

ary AR(1) characterized by a parameter vector θ̄, and driven

by i.i.d. innovations with unspecified pdf pw, then the ML

estimator derived under a misspecified Gaussian assumption

converges (a.s.) to the true θ̄, and it is asymptotically nor-

mal independently of the true, but unknown, pw. Of course,

the misspecification results into a loss in terms of estimation

accuracy, which is quantified by the matrix Cθ̄.

In addition to all this, Theorem 1 is the cornerstone for the

derivation of the misspecified Wald test presented next.

4.2. Asymptotic analysis of the misspecified Wald statistic

Inspired by [10], we consider the following MW detector

ΛMW(x) = Nα̂T
(

JCN (θ̂)JT
)−1

α̂ (23)

where J = [I2,03] and N = M2. The asymptotic properties

of the MML estimator provided in Theorem 1 are the key to

study the asymptotic distributions of (23) under H0 and H1.

Theorem 2. If Assumption 1 holds true, then

ΛMW(x|H0) ∼
M→∞

χ2
2(0) (24)

ΛMW(x|H1) ∼
M→∞

χ2
2 (δ) (25)

with

δ , NᾱT
(

JCθ̄H0
J
T
)−1

ᾱ (26)

and θ̄H0 ,
[
0
T
2 , γ̄

T
]T

.



Proof. The proof can be found in Section 10.

Interestingly, the above theorem shows that the pdfs of

(23) under H0 and H1 converge to χ-squared pdfs with 2
degrees of freedom when M → ∞. Unlike [3,4], this is

achieved without any a priori knowledge on the pdf of the

clutter model, but relies only on the mild conditions provided

in Assumption 1. In particular, it follows that (2) is asymp-

totically satisfied by λ̄ = −2 lnPFA. This is valid for any

pre-assigned PFA and, more importantly, for any true, but

unknown, pdf of the innovations. In addition to this, the fol-

lowing corollary can be proved.

Corollary 1. If Assumption 1 holds true, then the probability

of detection of (23) is such that

PD(λ) →M→∞ Q1

(√
δ,
√
λ
)

(27)

where Q1(·, ·) is the Marcum Q function of order 1 and δ is

given by (26).

Since Q1(·, ·) is monotonic in its first argument, Corol-

lary 1 states that the PD of the MW test in (23) goes to 1 as

M → ∞. Moreover, it shows that the PD depends on the

true, but unknown, pdf of the innovations through the matrix

Cθ̄H0
in (26). This is different from the asymptotic expres-

sion of the PFA that is invariant to the misspecification of pw.

We conclude by noticing that, even if the results of Theorem

2 and Corollary 1 are asymptotic in nature, in practice they

are satisfied by “practically reasonable” numbers of antennas.

Indeed, in the next section numerical results are used to show

that the asymptotic regime is reached already for M = 50.

5. NUMERICAL VALIDATION

Monte Carlo simulations are now used to validate the theo-

retical results of Theorem 2 for a MIMO radar system with

a finite number of antennas. The data vector x in (4) is gen-

erated as follows. Under the hypothesis H0, we have that

x = c where c is generated according to the AR(1) process

in (5) with ρ = |ρ|ej2πνc and νc = 0.23. The innovations

{wn, ∀n} share a complex t-distribution of the form [21,23]:

pw(wn) = (σ2π)−1λ(λ/η)λ(λ/η + |wn|2/σ2)−(λ+1) (28)

where λ ∈ (1,∞) and η = λ/σ2(λ − 1) are the shape and

scale parameters. In particular, λ controls the tails of pw. If

λ is close to 2, then pw is heavy-tailed and highly non Gaus-

sian. On the other hand, if λ → ∞, then pw collapses to the

Gaussian distribution. We chose λ = 3 and σ2 = 1. Un-

der the hypothesis H1, x = αv + c where c is generated

as before, while [v]n = ejπ(n−1) sin(φ), n = 1, . . . ,M2 and

φ = arcsin(ν/2) where ν = 0.25. Note that, by choosing

ν = 0.25 the target comes from an angular direction, which

is very close to the peak of the clutter power. The target term

α is generated such that the signal-to-noise ratio is −10dB.

Figs. 1 and 2 illustrate the PFA and PD of the proposed

MW test in (23) as a function of the number of antennas M

10 20 40 60 80 100

10-4

10-3

10-2

| |=0.9
| |=0.7
| |=0.3

Nominal PFA

Fig. 1: PFA of the MW test in (23) as a function of M for

different values of |ρ|. The nominal PFA is fixed to PFA =
10−4. Convergence to PFA is achieved already for M ≥ 50.
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Fig. 2: PD of the MW test in (23) as a function of M . Con-

vergence to the nominal PD is achieved already for M ≥ 50.

and different values of |ρ|. In line with Theorem 2, the results

show that PFA tends to the nominal value PFA = 10−4 as M
increases. This is achieved despite the misspecification in the

clutter distribution. With |ρ| = 0.3, a good convergence is al-

ready achieved for M = 50, which is a reasonable number for

practical applications. A larger M is needed as |ρ| increases.

This is an expected result since the clutter power is highly fo-

cused in the angular direction of the target. In agreement with

Corollary 1, Fig. 2 shows that the PD approaches the asymp-

totic expression provided in Corollary 1 as M increases.

6. CONCLUSIONS AND DISCUSSIONS

We proved that it is possible to build a Wald-type detector

whose asymptotic distribution is a χ-squared pdf regardless of

the true, but unknown, statistical characterization of the data

generating process. This was achieved by combining the mis-

specification theory with the paradigm of large-scale MIMO

radar systems, which makes it as the first attempt to apply

the “massive” MIMO paradigm of communication systems to

radar applications. The analysis assumed a simple autoregres-

sive model of order 1 for the observation data. A generaliza-

tion to AR models of higher order is required to come out

with a fully deployable framework. This is addressed in [24]

wherein a robust Wald-type detector that does not require any

a priori knowledge on the order of the autoregressive model

is developed.



7. PROOF OF PROPOSITION 1

The complex AR(1) process in H1 of (1) admits a real repre-

sentation as:

x̃n =

{
µ̃1(α) + c̃1, n = 1,
µ̃n(α, ρ, xn−1) + w̃n, n = 2, . . . , N

(29)

where µ̃1(α) and µ̃n(α, ρ, xn−1) are the real representations

of the complex scalars µ1(α) , αv1 and µ(α, ρ, xn−1) ,
α(vn − ρvn−1) + ρxn−1, respectively. Under the (possibly

misspecified) Gaussianity assumption, the pdf of the real rep-

resentation of the innovations w̃n is ∀n

fw̃n
(wR,n, wI,n) =

1

2π(σ2
w/2)

e
− ||w̃n||2

2(σ2
w/2) = g(w|0, σ2

w). (30)

By using (29) and exploiting the properties of Gaussian

AR(1) processes yields

fx̃n|x̃n−1
(xR,n, xI,n|x̃n−1)

=
1

πθ5
e
−

||x̃n−µ̃n(α,ρ,xn−1)||2

θ5 (31)

=
1

πθ5
e−

|xn−µn(α,ρ,xn−1)|2

θ5 , n = 2, . . . , N (32)

while, from the stationarity property in (5), we get:

fx̃1
(xR,1, xI,1) =

1

2π
(

σ2

2(1−|ρ|2)

)e
−

||x̃1−µ̃1(α)||2

2

(

σ2

2(1−|ρ|2)

)

=
1

πs(α, ρ)
e−

|x1−µ1(α)|2

s(α,ρ) .

(33)

Finally, (9) follows directly from the definition of the param-

eter vector θ in (8).

8. CLOSED-FORM EXPRESSION FOR THE SCORE

FUNCTIONS IN (14) AND (15)

Let us recall here the expressions of the score functions intro-

duced in Section 4 as:

s1(θ) , ∇θ ln g(x1|µ1(θ), s(θ)), n = 1 (34)

sn(θ) , ∇θ ln g(xn|µn(θ, xn−1), θ5), n = 2, . . . , N (35)

In the following, the closed-form expression for both is pro-

vided. From the results of Proposition 1, it is immediate to

verify that:

lng(xn|µn(θ, xn−1), θ5)

= − ln θ5 − θ−1
5

(

Re {εn(θ)}2 + Im {εn(θ)}2
)

(36)

where

εn(θ) ≡ εn(xn, µn(θ, xn−1)) , xn − µn(θ, xn−1) (37)

for n = 2, . . . , N . The score vector for a single conditional

observation sn(θ) , ∇θ ln g(xn|µn(θ, xn−1), θ5) can be ex-

pressed as:

sn(θ) = 2θ−1
5 (∇θRe {µn(θ, xn−1)}Re {εn(θ)})+

+ 2θ−1
5 (∇θIm {µn(θ, xn−1)} Im {εn(θ)})+

+ θ−1
5

[
θ−1
5 |εn(θ)|2 − 1

]
e5

(38)

for n = 2, . . . , N . Note that e5 , ∇θθ5 = [0, 0, 0, 0, 1]T For

n = 1, we have:

s1(θ) = 2s(θ)−1 (∇θRe {µ1(θ)}Re {ε1(θ)})+
+ 2s(θ)−1 (∇θIm {µ1(θ)} Im {ε1(θ)})+
+ s(θ)−1

[
s(θ)−1|ε1(θ)|2 − 1

]
∇θs(θ)

(39)

where

ε1(θ) ≡ ε1(x1, µ1(θ)) , x1 − µ1(θ). (40)

Through straightforward calculation, the gradients involved

in the previous equations can be obtained as:

∇θRe {µ1(θ)} = (Re {v1} ,−Im {v1} , 0, 0, 0)T , (41)

∇θIm {µ1(θ)} = (Im {v1} ,Re {v1} , 0, 0, 0)T , (42)

∇θs(θ) =










0
0

2θ3θ5
(1−θ2

3−θ2
4)

2

2θ4θ5
(1−θ2

3−θ2
4)

2

1
1−θ2

3−θ2
4










, (45)

whereas (43) and (44) are shown at the top of the next page.

9. CLOSED-FORM EXPRESSIONS FOR THE

MATRICES H1(θ̄) AND HN(θ̄) IN (12) AND (13)

Through direct calculation, it can be verified that:

Hn(θ̄) =

− 2[θ̄]−1
5

(
∇θRe

{
µn(θ̄, xn−1)

}
∇T

θRe
{
µn(θ̄, xn−1)

})

− 2[θ̄]−1
5

(
∇θIm

{
µn(θ̄, xn−1)

}
∇T

θ Im
{
µn(θ̄, xn−1)

})

− [θ̄]−2
5 e5e

T
5 (46)

for n = 2, . . . , N . Clearly, for n = 1, we have:

H1(θ̄) = −2s(θ̄)−1
[
∇θRe

{
µ1(θ̄)

}
∇T

θRe
{
µ1(θ̄)

}]

+−2s(θ̄)−1
[
∇θIm

{
µ1(θ̄)

}
∇T

θ Im
{
µ1(θ̄)

}]

− s(θ̄)−2∇θs(θ̄)(∇θs(θ̄))
T . (47)

Notice that the closed form expressions of the gradient op-

erators involved in the previous two equations are given in

(41)–(45).



∇θRe {µn(θ, xn−1)} =









Re {vn}+ Im {vn−1} θ4 − Re {vn−1} θ3
−Im {vn}+ Im {vn−1} θ3 +Re {vn−1} θ4
Re {xn−1}+ Im {vn−1} θ2 − Re {vn−1} θ1
−Im {xn−1}+ Im {vn−1} θ1 +Re {vn−1} θ2

0









(43)

∇θIm {µn(θ, xn−1)} =









Im {vn} − Im {vn−1} θ3 − Re {vn−1} θ4
Re {vn}+ Im {vn−1} θ4 − Re {vn−1} θ3

Im {xn−1} − Im {vn−1} θ1 − Re {vn−1} θ2
Re {xn−1}+ Im {vn−1} θ2 − Re {vn−1} θ1

0









(44)

10. PROOF OF THEOREM 2

Let us recall here the misspecified Wald (MW) detector as

defined in (23):

ΛMW(x) = Nα̂T
(

JCN (θ̂)JT
)−1

α̂ (48)

with J = [I2,03].

10.1. Asymptotic distribution of ΛMW under H0

Next we show that, under the null hypothesis H0, ΛMW has

an asymptotic central χ-square distribution. Let us define the

vector

θ̄H0 , (02, ρ̄, σ̄
2)T (49)

as the true parameter vector under the null hypothesis. Under

H0, from Theorem 1, we have that:

θ̂
a.s.→

N→∞
θ̄H0 (50)

√
N
(

JCθ̄H0
J
T
)−1/2

α̂ ∼
N→∞

N (0, I2) . (51)

For Hermitian and positive-definite matrices, the inverse op-

erator and the principal square root are both continuous op-

erators (see e.g. [25]), then their composition is continuous.

Then, from (22) and by using the Continuous Mapping Theo-

rem [26, Theo. 2.7], we have that:

C
−1/2
N (θ̂)−C

−1/2

θ̄H0

a.s.→
N→∞

0. (52)

Let us rewrite the test in (23) as in (53) at the top of next

page. Finally, from (51) and (52), by a direct applications of

the Slutsky’s Lemma, we immediately obtain (54) at the top

of the next page, where χ2
2(0) indicates a central χ-squared

random variable with two degrees of freedom.

10.2. Asymptotic distribution of ΛMW under local alter-

natives

Suppose that the alternatives to H0 is of the form:

H1 : α =
d√
N

, d ∈ R
2. (56)

Let us define the vector

θ̄
(N)
H1

, (d/
√
N, ρ̄, σ̄2)T (57)

as the true parameter vector under local alternatives. Note that

lim
N→∞

θ̄
(N)
H1

= θ̄H0 . (58)

If the matrices Aθ and Bθ , defined in (17) and (18) respec-

tively, are continuous in a neighbourhood of θ̄H0 , then Cθ is

continuous in a neighbourhood of θ̄H0 as well. Then, from

(58):

lim
N→∞

C
θ̄
(N)
H1

= Cθ̄H0
. (59)

Under H1 in (56), from Theorem 1, we have that:

θ̂
a.s.→

N→∞
θ̄
(N)
H1

(60)

√
N

(

JC
θ̄
(N)
H1

J
T

)−1/2(

α̂− d/
√
N
)

∼
N→∞

N (0, I2) .

(61)

As before, by using the Continuous Mapping Theorem [26,

Theo. 2.7] and the limiting results in (59), we have that:

C
−1/2
N (θ̂)−C

−1/2

θ̄
(N)
H1

=
N→∞

C
−1/2
N (θ̂)−C

−1/2

θ̄H0

pXN→
N→∞

0. (62)

Let us rewrite the test in (23) as in (53) at top of the next page.

From (61) and (62), by a direct application of the Slutsky’s

Lemma, we immediately obtain the result in (55) at the top of

the next page. This result the can be used to approximate the

power of the test, i.e. the PD . To do this, it is enough to put

d ≡
√
Nᾱ. Then, we have:

ΛMW(x|H1) ∼
N→∞

χ2
2

(

NᾱT
(

JCθ̄H0
J
T
)−1

ᾱ

)

. (63)

Finally, using the properties of the non-central χ-squared dis-

tribution with 2 dof [27], a closed form expression of the

asymptotic PD can be expressed as:

PD(λ) = Q1

(√

NᾱT
(

JCθ̄H0
JT
)−1

ᾱ,
√
λ

)

(64)

where Q1(·, ·) is the Marcum Q function of order 1.



ΛMW(x) =

(√
N
(

JCN (θ̂)JT
)−1/2

α̂

)T (√
N
(

JCN (θ̂)JT
)−1/2

α̂

)

. (53)

ΛMW(x|H0) =

(√
N
(

JCθ̄H0
J
T
)−1/2

α̂

)

︸ ︷︷ ︸

∼
N→∞

N (0,I2)

T (√
N
(

JCθ̄H0
J
T
)−1/2

α̂

)

︸ ︷︷ ︸

∼
N→∞

N (0,I2)

∼
N→∞

χ2
2(0), (54)

ΛMW(x|H1) =

(√
N
(

JCN (θ̂)JT
)−1/2

α̂

)

︸ ︷︷ ︸

∼
N→∞

N

(

(

JCθ̄H0
JT

)−1/2
d,I2

)

T (√
N
(

JCN (θ̂)JT
)−1/2

α̂

)

︸ ︷︷ ︸

∼
N→∞

N

(

(

JCθ̄H0
JT

)−1/2
d,I2

)

∼
N→∞

χ2
2

(

d
T
(

JCθ̄H0
J
T
)−1

d

)

. (55)
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