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Abstract—Since the seminal paper by Marzetta from 2010,
the Massive MIMO paradigm in communication systems has
changed from being a theoretical scaled-up version of MIMO,
with an infinite number of antennas, to a practical technology.
Its key concepts have been adopted in the 5G new radio
standard and base stations, where 64 fully-digital transceivers
have been commercially deployed. Motivated by these recent
developments, this paper considers a co-located MIMO radar
with MT transmitting and MR receiving antennas and explores
the potential benefits of having a large number of virtual spatial
antenna channels N = MTMR. Particularly, we focus on the
target detection problem and develop a robust Wald-type test
that guarantees certain detection performance, regardless of the
unknown statistical characterization of the disturbance. Closed-
form expressions for the probabilities of false alarm and detection
are derived for the asymptotic regime N → ∞. Numerical results
are used to validate the asymptotic analysis in the finite system
regime with different disturbance models. Our results imply that
there always exists a sufficient number of antennas for which
the performance requirements are satisfied, without any a-priori
knowledge of the disturbance statistics. This is referred to as the
Massive MIMO regime of the radar system.

Index Terms—Large-scale MIMO radar, robust detection,
Wald test, misspecification theory, unknown disturbance distri-
bution, dependent observations.

I. INTRODUCTION

Consider a multiple antenna radar system characterized

by N spatial channels collecting K temporal snapshots

{xk}Kk=1 ∈ C
N from a specific resolution cell, defined in

an absolute reference frame. The primary goal of any radar

system is to discriminate between two alternative hypotheses:

the presence (H1) or absence (H0) of the target, in the

resolution cell under test. Among others, a common model

for the signal of interest is ᾱkvk, where vk ∈ C
N is known

at each time instant k ∈ {1, . . . ,K} and ᾱk ∈ C is a

deterministic, but unknown, scalar that may vary over k. Any

measurement process involves a certain amount of disturbance.

In radar signal processing, the disturbance is produced by

two components, the clutter and white Gaussian measurement

noise, and it is modelled as an additive random vector, say

ck, whose statistics may vary over k. Formally, the detection

problem can be recast as a composite binary hypothesis test

(HT) [1]:

H0 : xk = ck k = 1, . . . ,K,
H1 : xk = ᾱkvk + ck k = 1, . . . ,K.

(1)
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To solve (1), a decision statistic Λ(X) of the dataset X ,
[x1, . . . ,xK ] is needed and its value must be compared with

a threshold:

Λ(X)
H1

≷
H0

λ (2)

to discriminate between the null hypothesis H0 and the al-

ternative H1. A common requirement in radar applications is

that the probability of false alarm has to be maintained below

a pre-assigned value, say PFA. Consequently, the threshold λ
should be chosen to satisfy the following integral equation:

Pr {Λ(X) > λ|H0} =

∫ ∞

λ

pΛ|H0
(a|H0)da = PFA, (3)

where pΛ|H0
is the probability density function (pdf) of Λ(X)

under the null hypothesis H0.

A. Motivation

Finding a solution to (3) is in general a challenge. The

common way out relies upon some “ad-hoc” assumptions on

the statistical model of the dataset X. In order to clarify this

point, let us have a closer look to the steps required to solve

(3). Firstly, a closed-form expression for pΛ|H0
is needed. By

definition, pΛ|H0
is a function of the chosen decision statistic

Λ(X) and of the joint pdf pX(X) of X. If all the ᾱk, ∀k
are modelled as deterministic unknown scalars, pX(X) is

fully determined by the joint pdf pC(C) of the disturbance

C = [c1, . . . , cK ]. A first simplification comes from the

assumption that the disturbance vectors {ck} are independent

and identically distributed (i.i.d.) random vectors such that

pC(C) =
∏K

k=1 pC(ck) [2,3]. This assumption is, however,

not always valid in practice. A second simplification that is

commonly adopted in the radar literature (see e.g. [2]–[4]) is

to assume that the functional form of pC(ck) ≡ pC(ck;γ)
is perfectly known, up to a possible (finite-dimensional) de-

terministic nuisance vector parameter γ; for example, the

(vectorized) covariance matrix. In order to obtain a consistent

estimate γ̂ of γ, a secondary dataset1 has to be exploited

(see e.g. [5]). Note that the required pΛ|H0
is a function

of γ̂ as well. A third simplifying assumption is that the

signal parameters ᾱk remain constant over k, i.e. ᾱk ≡ ᾱ, ∀k
[2]–[4]. Under these three assumptions, a possible choice

for the decision statistic is the generalized likelihood ratio

(GLR) ΛGLR(X) (see e.g. [6, Ch. 11] and references therein).

However, a closed-form solution to (3) can be found only

for a very limited class of disturbance models for which the

Gaussianity assumption needs also to be imposed. An asymp-

totic approximation for the solution to (3) can be obtained

1In radar terminology, a secondary dataset is a set of “signal-free” snapshots
collected form resolution cells adjacent to the one under test and sharing the
same statistical characterization.
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by exploiting a well-known asymptotic property of the GLR.

Under the hypothesis H0 and for K → ∞, the pdf of ΛGLR(X)
converges to the one of a central χ-squared random variable

with 2 degrees of freedom, denoted as χ2
2(0) [6, Ch. 11].

Hence, by using the properties of the χ-squared distribution,

it is immediate to verify that (3) is asymptotically satisfied by

λ̄ = −2 lnPFA. This is a particularly simple result that has

received a lot of attention in the literature. However, it relies

on the four simplifying assumptions previously introduced and

summarized as follows:

A1 The disturbance vectors {ck}Kk=1 are i.i.d. over the ob-

servation interval.

A2 The pdf pC(ck;γ) of the disturbance is perfectly known,

up to a unknown nuisance parameter vector γ.

A3 The target complex amplitude ᾱk is maintained constant

over the observation interval, i.e. ᾱk ≡ ᾱ, ∀k.

A4 The number of temporal snapshots K is assumed to be

much larger that the spatial channels N .

Even if these assumptions make the (asymptotic) analysis of

ΛGLR(X) analytically tractable, they are seldom satisfied in

practical applications.

B. Contributions

This paper considers a co-located MIMO radar with MT

transmitting and MR receiving antennas and aims at deriving

a detector that satisfies pre-assigned performance requirements

without relying on the four assumptions above. Inspired by

the recent developments in Massive MIMO communications

[7]–[10], we aim at exploring the potential benefits of having

a very large number of antennas. Particularly, we assume

that a single time snapshot, i.e. K = 1, is collected, and

operate in the asymptotic regime where the number of virtual

spatial antenna channels N = MTMR grows unboundedly,

i.e., N → ∞. This makes the three assumptions A1, A3 and

A4 no longer needed. Advances in robust and misspecified

statistics ([11]–[16] and [17,18]) are used to dispose of the

cumbersome and unrealistic assumption A2. By adopting a

very general disturbance model taking into account the spatial

correlation structure of the observed samples, we propose a

robust Wald-type detector that is asymptotically distributed,

when N → ∞, as a χ-squared random variable (under both

H0 and H1) irrespective of the actual and unknown distur-

bance pdf pC(c). This asymptotic result is achieved without

the need of any secondary dataset. Although the theoretical

findings of this paper are valid for a very general disturbance

model, numerical results are provided for two non-Gaussian,

stable auto-regressive disturbance models of order p = 3 and

6. It turns out that a pre-assigned value of PFA = 10−4 is

achieved for N = MTMR ≥ 104 with both models. This

number of virtual spatial antenna channels defines what we

call the Massive MIMO regime of the radar system.

Compared to our previous paper [19], the main difference

lies in the absence of any a priori knowledge of the disturbance

model. In fact, in [19] the analysis was developed for an au-

toregressive model of order 1, but with no a priori knowledge

of its statistics.

C. Relevant literature

The MIMO paradigm has been the subject of intensive

research over the past 15 years in radar signal processing.

Initially introduced in wireless communications as a new en-

abling technology, the MIMO framework has been recognized

to have a great potential in boosting the capabilities of classical

antenna array systems. Based on the array configurations used,

MIMO radars can be classified into two main types. The

first type uses widely separated antennas (so-called distributed

MIMO) to capture the spatial diversity of the target’s radar

cross section (RCS) [20]. The second type employs arrays

of closely spaced antennas (so-called co-located MIMO) to

coherently combine the probing signals in certain points of

the search area [21]. Hybrid configurations are also possible.

While the advantages in terms of spatial resolution, pa-

rameter identifiability, direction-of-arrival estimation and in-

terference mitigation have been largely investigated in the

MIMO radar literature, the potential benefits that a large

number of virtual spatial antenna channels can bring into

the target detection problem in terms of robustness with

respect to the generally unknown disturbance model have not

been explored yet. Surprisingly, not only the highly desirable

robustness property has been somehow disregarded but, as

pointed out in [22], even the availability of reliable, non-

trivial, disturbance models is scarce. Remarkable exceptions

to the mainstream Gaussianity assumption have been recently

discussed in [23] and in [24]. Particularly, in [23] the perfor-

mance of the Adaptive Normalized Matched Filter (ANMF),

exploiting robust estimators for the disturbance covariance

matrix, has been investigated with non-Gaussian disturbance.

Specifically, random matrix tools have been used to obtain

asymptotic approximations of the probabilities of false alarm

and misdetection of the ANMF for the regime in which both

N and K go to infinity with a non-trivial ratio N/K. Similar

random matrix tools have been adopted in [24] to derive

some asymptotic (in random matrix regime) results about

the direction-of-departure and direction-of-arrival estimation

in a non-Gaussian disturbance setting. Again, the random

matrix machinery has been exploited in [25] to investigate

the asymptotic performance of a GLRT detector in cognitive

radio applications. Specifically, the HT problem tackled in [25]

is similar to the one in (1), but the steering vector vk and

ᾱk are assumed unknown. In the same spirit of [25], [26]

has recently investigated the possibility to derive eigenvalues-

based detectors for HT problem of the form in (1) for spectrum

sensing and sharing in cognitive radio. However, in both [25]

and [26], the disturbance was assumed to be a simple white

Gaussian process with distribution a priori known, up to its

statistical power. The asymptotic analysis in [24]–[26] requires

that both N and K grow unboundedly. This is different from

this paper where the temporal dimension K is kept fixed;

specifically, we assume to collect a single snapshot vector.

D. Outline and Notation

The reminder of the paper is organized as follows. In

Section II, the system and signal models as well as the

resulting HT problem are introduced, by focusing our attention



3

Target, φ

Transmitter

Receiver

Fig. 1. Co-located MIMO radar.

on the disturbance model for co-located MIMO radars. Section

III describes our main results. Specifically, the explicit form

of the proposed robust Wald-type test is provided along with

the theoretical derivation of its asymptotic distribution under

both H0 and H1. Numerical validations and simulation results

are provided in Section IV. Some concluding remarks and

discussions are drawn in Section V.

Throughout this paper, italics indicates scalar quantities (a),

lower case and upper case boldfaces indicate column vectors

(a) and matrices (A), respectively. Each entry of a N × N
matrix A is indicated as ai,j , [A]i,j , while the i-th column

vector of A is indicated as ai such that A = [a1, . . . ,aN ].
We use ∗, T , and H to indicate complex conjugation, trans-

pose, and the Hermitian operators, respectively. For random

variables or vectors, =d stands for “has the same distribution

as”. Also,
a.s.→

N→∞
indicates the almost sure (a.s.) convergence

and
p→

N→∞
indicates the convergence in p-probability. We call

Q1(·, ·) the Marcum Q function of order 1. The symbol ⌊a⌋
defines the nearest integer less than or equal to a ∈ R.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a co-located MIMO radar system equipped with

MT transmitting antennas and MR receiving antennas [21].

The transmitting array is characterized by the array manifold,

also called steering vector, aT (φ), where φ is the position

vector defined in an absolute reference frame [27]. Similarly,

the receiving array can be characterized by the steering vector

aR(φ) since the positions of the antennas in the absolute

reference frame are known; see Fig. 1.

A. Signal model

Given a target with position vector φ̄, the signal collected

at the receiving array can be modelled as [22,28]:

x(t) = ᾱaR(φ̄)a
T
T (φ̄)s(t− τ̄)ejω̄t + n(t), t ∈ [0, T ], (4)

where x(t) ∈ C
MR is the array output vector at time t,

s(t) ∈ C
MT is the vector of transmitted signals, ᾱ ∈ C

accounts for the radar cross section of the target and the

two-way path loss, which is the same for each transmitter

and receiver pair. This is generally verified in co-located

MIMO radars [21]. The parameters τ̄ and ω̄ represent the

actual time delay and Doppler shift, due to the target position

and velocity. The complex, vector-valued, random process

n(t) ∈ C
MR accounts for the disturbance. We assume that

s(t) is obtained as a linear transformation of a set of nearly

orthonormal signals so(t) ∈ C
MT , i.e. s(t) = Wso(t), where

W = [w1, . . . ,wMT
]T ∈ C

MT×MT and wm ∈ C
M is the

weighting vector of the transmit antenna element m with

power ||wm||2.

Let l = 1, . . . , L and k = 1, . . . ,K be the indices

characterizing each time l∆t and frequency k∆ω samples,

respectively. The output X(l, k) ∈ C
MR×MT of the linear

filter matched to so(t) can be expressed as [22,28]:

X(l, k) = ᾱaR(φ̄)aT (φ̄)
T
WS(l, k) +C(l, k), (5)

where

S(l, k) ,
∫ T

0

so(t− τ̄)sHo (t− l∆t)e−j(k∆ω−ω̄)tdt (6)

takes into account potential “straddling losses”, that are losses

due to a not precise centering of the target in a range-Doppler

gate or to a not exact orthogonality between waveforms, and

C(l, k) =

∫ T

0

n(t)sHo (t− l∆t)e−jk∆ωtdt. (7)

After omitting the indexes (l, k) for ease of notation, we may

rewrite (5) in vectorial form as:

C
N ∋ x = vec (X) = ᾱv(φ̄) + c, (8)

where N , MRMT and

v(φ̄) =
(
S
T ⊗ IMR

) [
W

T
aT (φ̄)⊗ aR(φ̄)

]
(9)

and c , vec (C). While aT (φ) and aR(φ) depend on the

geometry of the transmitting and receiving arrays, respec-

tively, the matrix W can be designed to shape arbitrarily the

transmitting beam; see [29, Ch. 4] and references therein. For

example, with W = IMT
, the transmitted power is uniformly

distributed over all possible directions. On the other hand, with

W = aT (φ)
∗
aT (φ)

T , it is fully directed towards the direction

φ. Intermediate cases can be obtained [28].

We assume that n(t) is zero-mean and wide-sense station-

ary; that is, E{n(t)} = 0, ∀t and E{n(t)n(τ)H} = Σ(t−τ).
Hence, from (7) it easily follows that E{c} = 0 and

Γ , E{ccH} =

∫ T

0

∫ T

0

[s∗o(t− l∆t)⊗ IMR
]Σ(t− τ)×

× [s∗o(t− l∆t)⊗ IMR
]
H
e−jk∆ω(t−τ)dtdτ

=

∫ T

0

∫ T

0

[
s
∗
o(t− l∆t)sTo (t− l∆t)⊗Σ(t− τ)

]
×

× e−jk∆ω(t−τ)dtdτ. (10)

As seen, Γ is a function of Σ(t − τ) (i.e., the covariance

matrix of n(t)) and so(t). In the literature (e.g., [30],[31, Ch.

4]), a simple model for n(t) is to assume that its samples are

uncorrelated in both spatial (along the receiving array) and

temporal (along T ) domains. This implies that Σ(t − τ) =
σ2

IMR
δ(t−τ). If so(t) is a vector of orthonormal waveforms,

it is thus immediate to verify that Γ in (10) reduces to Γ =
σ2

IN . Under the assumption of uncorrelated samples in the
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time domain only and perfect orthonormality of the transmitted

waveforms, we have that Γ = IMT
⊗ΣR where ΣR denotes

the receive spatial covariance matrix [32]. However, the above

two conditions may not be satisfied in practice [22,33]. This

is why in this paper we do not make any a priori assumption

on the structure of Γ. We only assume that its (i, j)-th entry

goes to zero at least polynomially fast as |i−j| increases. This

assumption will be discussed in the next section and formally

introduced in Assumption 1.

B. Disturbance model

As previously discussed, many simplified models have

been proposed in the literature to statistically characterize

the disturbance vector c at the output of the matched filter

bank of a (co-located) MIMO radar system. We refer to

[22,33] for a comparison among various statistical models and

for a discussion about the physical simplifying assumptions

underlying them. Here, we simply note here that the two main

hypotheses usually made about the statistical characterization

of the disturbance vector are: i) c is temporally and spatially

white, and ii) c is Gaussian-distributed. As we will show,

advances in robust and mis-specified statistics allow us to

drop these two strong assumptions in favor of much weaker

conditions.

To formally characterize the class of random processes to

which the results of this paper apply, we need to introduce

the concepts of uniform and strong mixing random sequences

[34]–[37]. Roughly speaking, the uniform and strong mixing

properties characterize the dependence between two random

variables extracted from a discrete process separated by m
lags. Without any claim of completeness or measure-theoretic

rigor, the results of this paper apply to any random process

that satisfies a restriction on the speed of decay of its auto-

correlation function. Specifically, we limit ourselves to the

following class of random processes:

Assumption 1. Let {cn : ∀n} be a stationary discrete and

circular complex-valued process [38] representing the true,

and generally unknown, disturbance. Then, we assume that

its autocorrelation function satisfies rC [m] , E{cnc∗n−m} =
O(|m|−γ), m ∈ Z, γ > ̺/(̺− 1), ̺ > 1.2

Assumption 1 implies that the volume of the MIMO radar

must increase with the number of transmitting (MT ) and

receiving (MR) antennas. This means that the results of this

paper do not apply to “space-constrained” array topologies.

That said, Assumption 1 is very general and allows to ac-

count for most practical disturbance models. Indeed, any

(not necessary Gaussian) stable second-order stationary (SOS)

ARMA(p, q), and consequently any stable SOS AR(p) [39],

satisfies Assumption 1, since the auto-correlation function of

any stable SOS ARMA decays exponentially. The generality

of the ARMA model is because it can approximate, for p and

q sufficiently large, the second-order statistics of any complex

discrete random processes having a continuous Power Spectral

2Given a real-valued function f(x) and a positive real-valued function g(x),
f(x) = O(g(x)) if and only if there exists a positive real number a and a
real number x0 such that |f(x)| ≤ ag(x), ∀x ≥ x0.

Density (PSD) [40, Ch. 3]. Moreover, a non necessarily Gaus-

sian ARMA(p, q) is able to model the “spikiness” of heavy-

tailed data as well. Another disturbance model of practical

interest satisfying Assumption 1 is the Compound-Gaussian

(CG) model [41,42]. Indeed, recall that any CG-distributed

random vector c admits a representation:

c =d

√
τm (11)

for some real-valued positive random variable τ , called texture,

independent of the zero-mean, N -dimensional, circular, com-

plex Gaussian random vector, called speckle, m ∼ CN (0,Γ),
where Γ is its scatter matrix. Under a condition on the

structure of Γ, it easily follows that the N entries of m

can be interpreted as N random variables extracted from a

circular, Gaussian, SOS ARMA(p, q) process {mn : ∀n}, with

p, q < N .

We conclude by noticing that Assumption 1 is more general

than the one adopted in our previous work [19]. In fact, the

asymptotic results derived in [19] are obtained by assuming an

AR disturbance model,3 driven by innovations with possibly

unknown pdf. Unlike [19], this paper does not require any

a priori information on the specific disturbance model; as

stated in Assumption 1, only the polynomial decay of its auto-

correlation function is needed.

C. The hypothesis test problem

Based on the assumptions discussed above, the HT problem

for target detection in (1) can be expressed as:

H0 : x = c,
H1 : x = ᾱv + c,

(12)

where c ∈ C
N is the disturbance vector whose entries are

sampled from a complex random process {cn : ∀n} satisfying

Assumption 1. Note that, in practical radar scenarios, (12)

needs to be solved for any radar resolution cell of interest.

Specifically, let {φi; i = 1, . . . , Q} be the set of position

vectors pointing at Q radar resolution cells, defined in an

absolute reference frame. Then, the presence (or absence)

of a target has to be tested for all the Q resolution cells.

Consequently, (12) has to be solved for any different vector

v(φi), whose explicit form is defined in (9). Notice also that

a single-snapshot, i.e., K = 1, is used in (12).

To discriminate between H0 and H1 in the composite HT

problem (12), a test statistic is needed. Classical model-based

test statistics such as the Generalized Likelihood Ratio (GLR)

test and the Wald test (see e.g. [44]) cannot be used since the

functional form of the disturbance pdf pC and, consequently,

of the data pdf pX are unknown. We propose the following

approach. Since no a priori information on the functional form

of pX is available, let us choose the simplest estimator, say α̂,

for the signal parameter ᾱ. Then, building upon the asymptotic

statistics of α̂ as N → ∞, we define a Wald-type test to

solve the HT problem in (12). In fact, unlike the GLR statistic

that requires the explicit functional form of the data pdf, a

3We considered only the AR(1) case, but the theory could be readily
extended to a general AR(p) as discussed in [43].
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Wald-type statistic only needs an asymptotically normal,
√
N -

consistent estimator of ᾱ and a consistent estimate of its error

covariance. As shown next, this key fact allows us to derive a

robust test statistic for Massive MIMO radar configurations.

III. MAIN RESULTS

The main result of this section is the derivation of a robust

Wald-type test for (12) with the valuable property to have,

under H0, an asymptotic distribution invariant w.r.t. pX . The

closed form expressions of its asymptotic distribution under

both H0 and H1 will be provided. Since (12) is a composite

HT problem (i.e., it depends on the unknown deterministic

signal parameter ᾱ) a prerequisite for the implementation of

a decision statistic is the derivation of an estimator α̂ of ᾱ.

A. Estimation of ᾱ under dependent data

By relying on the outcomes of [17,18], in the following we

show that an asymptotically normal,
√
N -consistent estimator

of ᾱ can be easily implemented under any general disturbance

models satisfying Assumption 1.

A standard procedure is to recast an estimation problem into

a relevant (possibly constrained) optimization problem. In the

application at hand, an estimate of α can be obtained as:

α̂ = argmin
α∈C

GN (x, α), x ∼ pX , (13)

where GN (·, ·) is a suitable objective function and x =
[x1, . . . , xN ]T ∈ C

N is the available dataset characterized by

an unknown joint pdf pX .

Given the measurement model (under H1) in (12), the

most natural choice for GN (·, ·) is a Least-Square (LS) based

objective function:

GN (x, α) ,
N∑

n=1

|xn − αvn|2 = (x− αv)H(x− αv)

= ||x||2 + ||v||2
∣∣∣∣α− v

H
x

||v||2
∣∣∣∣
2

− |vH
x|2

||v||2

(14)

whose minimum is reached when the second addend vanishes.

This yields

α̂ =
v
H
x

||v||2 , (15)

which is a well-known result in the radar signal processing

literature addressing decision rules in Gaussian environment.

It can also be noted that, under a misspecified (white) Gaussian

assumption on the disturbance vector c, the LS estimator in

(15) coincides with the Mismatched Maximum Likelihood

estimator [13],[18].

By specializing the general findings about misspecified

estimation under dependent data proposed in [17] and [18],

the asymptotic properties of the LS estimator in (15) can be

obtained as shown in the following Theorem 1.

Theorem 1. Under Assumption 1, the LS estimator α̂ in (15)

is
√
N -consistent

α̂
a.s.→

N→∞
ᾱ (16)

and asymptotically normal

√
NB̄

−1/2
N AN × (α̂− ᾱ) ∼

N→∞
CN (0, 1), (17)

where

AN , N−1||v||2, (18)

B̄N , N−1
v
H
Γv, (19)

and Γ , EpC
{ccH}, with pC being the true (but generally

unknown) disturbance pdf.

Proof: All the required regularity conditions and a

measure-theoretic rigorous proof (for the real-valued case)

can be found in [17] and [18], while in Appendix A of this

paper we provide the reader with an “easy-to-follow” but

still insightful sketch of the proof in the complex case. Here,

only the principal facts underlying the proof of Theorem 1

are discussed. To prove the consistency of α̂, we need an

extension of the Law of Large Numbers (LLN) to uniform

and strong mixing random sequences (see Assumption 1). This

result is stated in Theorem 2.3 of [17]. With this suitable

generalization of the LLN, the (strong) consistency of the LS

estimator can be readily established as shown by Theorem 3.1

in [17]. Regarding the asymptotic normality, a generalization

to uniform and strong mixing random sequences of the Central

Limit Theorem (CLT) is required. This extension can be found

in [17, Th. 2.4] for the scalar case, and in [45, Th. 2] for

the multivariate case. The asymptotic normality of α̂ can be

established by a direct application of this version of the CLT as

shown in [17, Th. 3.2]. Finally, the extension of these results

to the complex field can be obtained simply by exploiting the

natural set isomorphism between C and R
2 and by using the

fact that only circular random sequences are considered.

Remark 1. Note that, since α̂ is obtained as a linear combi-

nation of circular observations x1, . . . , xN , its second-order

statistics are fully characterized by the variance EpX
{|α̂ −

ᾱ|2}, while its pseudo-variance EpX
{(α̂− ᾱ)2} is nil [38].

While AN in (18) is only a function of the known norm of v,

B̄N in (19) requires to compute the expectation w.r.t. the true,

but unknown, disturbance pdf pC . It can be shown that, under

a uniform (or strong) mixing condition for the disturbance

process {cn : ∀n}, a consistent estimator of B̄N is [17]:

B̂N ≡ B̂N (α̂) = N−1
N∑

n=1

|vn|2|ĉn|2

+ 2N−1
l∑

m=1

N∑

n=m+1

Re
{
vnv

∗
n−mĉnĉ

∗
n−m

}
(20)

where l is the so-called truncation lag [17],

ĉn = xn − α̂vn, ∀n (21)

and α̂ is given in (15). The estimate B̂N in (20) can be

rewritten in a more compact form as:

B̂N = N−1
v
H
Γ̂lv, (22)
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where

[Γ̂l]i,j ,





ĉiĉ
∗
j j − i ≤ l

ĉ∗i ĉj i− j ≤ l
0 |i− j| > l

(23)

for 1 ≤ i, j ≤ N . The consistency of B̂N is stated in the next

theorem (see [17, Th. 3.5]).

Theorem 2. Under Assumption 1, if l → ∞ as N → ∞ such

that l = o(N1/3) then 4:

B̂N − B̄N
p→

N→∞
0. (24)

Proof: The proof is given in [46, Th. 6.20].

Theorem 2 provides us with a useful criterion to choose the

truncation lag l. In fact, to ensure the consistency of B̂N , l
has to grow with N , but more slowly than N1/3.

B. A robust Wald-type test

Given the asymptotic characterization of the LS estimator

presented in Theorem 1, the Wald-type statistic can be set up

as:

ΛRW(x) =
2N |α̂|2
A−2

N B̂N

=
2|vH

x|2
vH Γ̂lv

, (25)

where the entries of Γ̂l are given in (23). The similarity

between the proposed ΛRW statistic and the Adaptive Matched

Filter (AMF) proposed in [47] is evident. However, the fol-

lowing comments are in order.

First, in [47] a set of homogeneous secondary snapshots,

i.e. a set of “signal-free” data collected from radar resolution

cells adjacent to the cell under test or at different time instants,

is used to estimate the disturbance covariance matrix. This

approach, however, requires that the disturbance statistics

remain constant over all the considered resolution cells or time

instants. Unlike the AMF, the decision statistic ΛRW in (25)

does not need any secondary data since it is able to extract

all the required information from the single snapshot collected

in the cell under test. Secondly, the AMF in [47] is derived

under the Gaussian assumption for the disturbance vector

c. Conversely, ΛRW in (25) can handle all the disturbance

distributions that satisfy Assumption 1, including the Gaussian

one. Third, as shown in Theorem 3 below, ΛRW in (25) is

shown to have the Constant False Alarm Rate (CFAR) property

as N → ∞ for all the disturbance distributions satisfying

Assumption 1 and without the need of any secondary data.

This is a great advantage w.r.t. the AMF that is CFAR

only if the disturbance is Gaussian-distributed and a set of

homogeneous secondary data is available.

The asymptotic property of ΛRW(x) can be stated as fol-

lows.

Theorem 3. If Assumption 1 hold true, then

ΛRW(x|H0) ∼
N→∞

χ2
2(0), (26)

ΛRW(x|H1) ∼
N→∞

χ2
2 (ς) , (27)

4Given a real-valued function f(x) and a strictly positive real-valued
function g(x), f(x) = o(g(x)) if for every positive real number a, there
exists a real number x0 such that |f(x)| ≤ ag(x), ∀x ≥ x0.

where ς , 2|ᾱ|2 ||v||4

vHΓv
.

Proof: The proof follows from Theorem 1 and a known

result about circular Gaussian random variables [48]. In partic-

ular, if a ∼ CN (µa, σ
2
a), then 2|a−µa|2/σ2

a ∼ χ2
2(0). Details

are given in Appendix B.

The above theorem shows that the pdfs of (25) under

H0 and H1 converge to χ-squared pdfs with 2 degrees of

freedom when the number of virtual spatial antenna chan-

nels N = MTMR goes to infinity. This means that (3) is

asymptotically satisfied by λ̄ = −2 lnPFA. This is valid

for any pre-assigned PFA and, more importantly, for any

disturbance process {cn : ∀n} satisfying Assumption 1. In

other words, we could say that ΛRW(x) achieves the CFAR

property w.r.t. all the disturbance distributions satisfying As-

sumption 1 when a sufficiently large number of transmitting

and receiving antennas is used. Numerical results will be used

to show that such Massive MIMO regime is achieved for a

feasible large number of antennas. Some considerations on

the asymptotic distribution of ΛRW(x) under H1 can also be

done. In particular, in order to make explicit the dependence of

ς from aT (φ̄), aR(φ̄) and W, one can substitute the definition

of v given in (9) into ς to obtain:

ς =
2|ᾱ|2M2

R‖(WS)TaT (φ̄)‖4
tr
(
Γ
[
(WS)TaT (φ̄)aHT (φ̄)(WS)∗ ⊗ aR(φ̄)aHR (φ̄)

]) .

(28)

Remark 2. Further manipulations to the expression of ς in

(28) are allowed if the model in (10) is adopted for the

covariance matrix Γ. Specifically, by substituting (10) in (28),

we get:

ς =
2|ᾱ|2MR‖(WS)TaT (φ̄)‖2∫∫ T

0
||so(t− l̄∆t)||2tr [Σ(t− τ)] e−jk̄∆ω(t−τ)dtdτ

,

(29)

where l̄ and ω̄ defines the range-Doppler gate under test.

Moreover, if so(t) is a vector of perfectly orthonormal wave-

forms, i.e. S = IMT
, and if Σ(t− τ) = σ2

IMR
δ(t− τ), (29)

can be further simplified as:

ς =
2|ᾱ|2P (φ̄)2

σ2
, (30)

where P (φ) , a
H
T (φ)W∗

W
T
aT (φ) is the beam pattern of

the transmitting array as a function of the position vector

φ. The same result can be found in [30], where a LR

test, perfectly matched to white Gaussian disturbance, was

exploited as a detector.

The expression in (30) suggests us an interesting fact. Under

the specific and simplistic scenario of perfectly orthonormal

waveforms and (spatial and temporal) white Gaussian distur-

bance, a perfectly matched LR-based detector has the same

(asymptotic) detection performance of the robust Wald-type

test proposed here in (25). In other words, under the simplistic

scenario mentioned above, ΛRW in (25) does not present any

loss in detection w.r.t. the “optimal” LR test even if ΛRW does

not require any a priori knowledge about the Gaussianity of the

disturbance, while the LR test does. It is also worth mentioning

that, in a more involved and realistic scenario, an LR-based test
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Fig. 2. PSD of the AR(3) in Scenario 1.

is practically unfeasible due to the lack of a priori information

on the functional form of the disturbance pdf. Moreover,

even if such disturbance pdf were available, the derivation

of LR statistics would likely be met with the impossibility to

derive its closed form expression. On the contrary, the closed

form expression and the asymptotic detection performance of

ΛRW in (25) remain unchanged under any known or unknown

disturbance process satisfying Assumption 1.

The following corollary is found.

Corollary 1. If Assumption 1 holds true, then the detection

probability of (25) is such that

PD(λ) →N→∞ Q1

(√
ς,
√
λ
)
, (31)

where Q1(·, ·) is the Marcum Q function of order 1 [49] and

ς is still given by ς = 2|ᾱ|2 ||v||4

vHΓv
.

Proof: By definition

PD(λ) , Pr {Λ(X) ≥ λ|H1} =

∫ ∞

λ

pΛ|H1
(a|H1)da. (32)

Then, (31) follows directly from (27) and the properties of the

non-central χ2 distribution [49].

Since Q1(·, ·) is monotonic in its first argument, Corollary

1 states that the PD of the RW test in (25) goes to 1 as

N → ∞. Moreover, it shows that PD depends on the true,

but unknown, covariance matrix Γ of the disturbance vector

c, the radar geometry, and the waveform matrix W (through

the vector v).

IV. NUMERICAL ANALYSIS

Numerical results are now used to validate the theoretical

findings on the asymptotic properties of ΛRW as stated in The-

orem 3. We consider a uniform linear array at the transmitter

and receiver, and a single target located in the far-field. We

assume that W = IMT
and the transmitted waveforms are

orthogonal, i.e., S = IMT
. Following [50], we choose the

radar geometry that maximizes the parameter identifiability.

This is achieved by using a receiving array characterized by

MR antenna elements with an inter-element spacing of d and
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Fig. 3. PSD of the AR(6) in Scenario 2.

a transmitting array whose MT elements are spaced by MRd.

This implies that

aR(φ) = [1, ej2πν , . . . , ej2π(MR−1)ν ]T , (33)

aT (φ) = [1, ej2πMRν , . . . , ej2π(MT−1)MRν ]T , (34)

where the spatial frequency ν is

ν ,
f0d

c
sin(g(φ)), (35)

where f0 is the carrier frequency of the transmitted signal, c is

the speed of light and g(·) is a known function of the position

vector φ. By substituting (33) and (34) into (9), the vector

v(φ) ∈ C
N can be expressed as, for i = 1, . . . , N = MRMT

[v(φ)]i = ej2π(i−1)ν (36)

which represents the steering vector of an equivalent phased-

array with N elements [50].

Numerical results are obtained by averaging over 106 Monte

Carlo simulations. Moreover, the truncation lag in Theorem 2

is chosen as l = ⌊N1/4⌋.

A. Disturbance models

Two different models are considered for the disturbance. In

Scenario 1, the disturbance vector c is generated according to

an underlying circular, SOS AR(p)

cn =
∑p

i=1
ρ̄icn−i + wn, n ∈ (−∞,∞), (37)

with p = 3, driven by i.i.d., t-distributed innovations wn whose

pdf pw is [14]:

pw(wn) =
λ

σ2
wπ

(
λ

η

)λ(
λ

η
+

|wn|2
σ2
w

)−(λ+1)

, (38)

where λ ∈ (1,∞) and η = λ/(σ2
w(λ − 1)) are the shape

and scale parameters. Specifically, λ controls the tails of

pw. If λ is close to 1, then pw is heavy-tailed and highly

non-Gaussian. On the other hand, if λ → ∞, then pw
collapses to the Gaussian distribution. In our simulations, we

set λ = 2 and σ2
w = 1. The AR(3) coefficient vector is
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Fig. 4. Estimated PFA as a function of the virtual spatial

antenna channels N in Scenario 1.

ρ̄ = [0.5ej2π0, 0.3e−j2π0.1, 0.4ej2π0.01]T . The normalized PSD

can be expressed as can be expressed as:

S(ν) , σ2
w

∣∣∣1−
∑p

n=1
ρ̄ne

−j2πnν
∣∣∣
−2

, p = 3, (39)

and is shown in Fig. 2. As seen, Scenario 1 is characterized

by a disturbance whose power is mostly concentrated around

the spatial frequency ν = 0.

To prove the robustness of the proposed ΛRW w.r.t.

more general disturbance models, in Scenario 2 we in-

crease the order of the AR process generating the distur-

bance vector c. Particularly, we consider a circular, SOS

AR(6) driven (as before) by i.i.d., t-distributed innovations

wn and characterized by the following coefficient vector

ρ̄ = [0.5e−j2π0.4, 0.6e−j2π0.2, 0.7ej2π0, 0.4ej2π0.1, 0.5ej2π0.3,
0.6ej2π0.35]T . The normalized PSD is reported in Fig. 3 and

shows that, differently from Scenario 1, the disturbance power

is spread over the whole range of ν. Moreover, it presents more

than a single peak.

In both scenarios, the disturbance process is normalized

in order to have σ2 = rC [0] = 1. Under hypothesis

H1, the signal-to-noise ratio is simply defined as SNR ,
10 log10(|ᾱ|2/σ2).

B. Performance Analysis

Since the disturbance PSD in Figs. 2 and 3 is not constant

w.r.t the spatial frequency ν, the performance of ΛRW(x) will

be evaluated for three different values of ν corresponding to

different disturbance power density levels (i.e. three different

target DOAs): ν1 = −0.2, ν1 = 0 and ν1 = 0.2. Figs. 4 and 5

plot the PFA of the proposed robust Wald test in (25) for the

three considered values of ν. As we can see, in both scenarios

ΛRW in (25) achieves the nominal value of 10−4 for N ≥ 104.

Moreover, in this Massive MIMO regime, i.e. for N ≥ 104,

the progress of the PFA curves for different scenarios and

for different values of spatial frequency are almost identical.

This provides a numerical validation of the theoretical result

provided in (26) of Theorem 3.
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Fig. 5. Estimated PFA as a function of the virtual spatial

antenna channels N in Scenario 2.
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Fig. 6. Estimated and nominal PD as a function of the virtual

spatial antenna channels N in Scenario 1 for different SNR

values, spatial frequency ν = 0, and nominal PFA = 10−4.

Fig. 6 considers Scenario 1 and illustrates the estimated

and the closed-form expression of PD given in Corollary

1 for three distinct SNR values. Particularly, we assume

SNR = −20,−10 and −5 dB. As seen, the PD tends to 1 as

the number of virtual spatial antenna channels N increases.

Specifically, for SNR ≥ −20 dB the PD approaches 1 for

N ≥ 104. From Fig. 6, it is also immediate to verify that

the PD estimated through Monte-Carlo runs is in perfect

agreement with the theoretical one provided in Corollary 1.

We conclude by noticing that similar numerical results have

been obtained for the CG disturbance model discussed in Sub-

section II-B. Since they are perfectly in line with the numerical

analysis reported above, we decided to not include them here

due to lack of space.

V. CONCLUDING REMARKS AND DISCUSSIONS

The detection problem in co-located MIMO radar systems

was analysed in this paper. A robust Wald-type detector was

proposed and its asymptotic performance investigated when
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the virtual spatial antenna channels N = MTMR goes to

infinity. Specifically, the CFAR property of the proposed

detector for the asymptotic regime N → ∞ and the wide

family of disturbance processes satisfying Assumption 1 was

mathematically proved and validated through numerical simu-

lations. The purpose of analysing the asymptotic performance

when N → ∞ is not that we advocate the deployment of

radars with a nearly infinite number of virtual antennas. The

importance of asymptotics is instead what it tells us about

practical systems with a finite number of antennas. Indeed,

our main results imply that we can always satisfy performance

requirements by deploying sufficiently many virtual antennas

N , without any a priori knowledge of the disturbance statistics.

Our numerical results showed that a pre-assigned value of

PFA = 10−4 can be achieved with N = MTMR ≥ 104

with non-Gaussian, stable autoregressive disturbance models

of order p = 3 and 6. This defines the so-called Massive

MIMO regime of the radar.

In Massive MIMO communications, linear combining, and

precoding schemes can entirely eliminate the interference

as the number of antennas grows unboundedly even with

imperfect knowledge of propagation channels. We showed

that a large-scale MIMO radar yields a target detector, which

is robust to the unknown disturbance statistics. We foresee

that further breakthroughs can be obtained by extending the

Massive MIMO concept to other radar problems [10]. Clearly,

by using very large arrays for waveform design, one can rad-

ically improve the spatial diversity gain and spatial resolution

for target detection, parameter estimation, and interference

rejection. However, the lesson learned from the last decade

of research in communications is that Massive MIMO is not

merely a system with many antennas but rather a paradigm

shift with regards to the modelling, operation, theory, and

implementation of MIMO systems. Our vision is that this

paradigm can be applied also to radars, and open new research

directions.

APPENDIX A

PROOF OF THEOREM 1

In this Appendix, the main ideas behind the proof of

Theorem 1 are discussed. Specifically, we show the
√
N -

consistency and the asymptotic normality of the mismatched

LS estimator α̂ in (15) under Assumption 1.

A. Consistency

Let us recall here the explicit expression of the LS objective

function in (14): GN (x, α) ,
∑N

n=1 |xn − αvn|2. Moreover,

let ḠN (α) be the following measurable and continuous func-

tion:

ḠN (α) ,
∑N

n=1
EpX

{
|xn − αvn|2

}
. (40)

Then, under Assumption 1, from [17, Th. 2.3] and [51, Th.

1], we have that

sup
α∈Ω

1

N

∣∣GN (x, α)− ḠN (α)
∣∣ a.s.→
N→∞

0, (41)

where Ω is a compact subset of C(≡ R
2). For the LS estimator

α̂ in (15), the following convergence property holds.

Theorem 4. If ḠN (α) has a unique minimum at α0,N ∈ C,

then from (41):

1

N

∣∣GN (x, α̂)− ḠN (α0,N )
∣∣ a.s.→
N→∞

0 (42)

and

α̂− α0,N
a.s.→

N→∞
0 (43)

where α0,N , argmin
α∈C

ḠN (α).

Proof: See the proof of Theorem 2.4 in [52].

Note that α0,N represents the counterpart of the pseudo-

true parameter defined in [12] for the i.i.d. data case. The

consistency of α̂ can finally be established by showing that

the pseudo-true parameter α0,N is equal to the true one ᾱ. To

this end, from (40) we obtain:

ḠN (α) =

N∑

n=1

EpX

{
|xn − αvn|2

}

= σ2
c − |ᾱ− α|2||v||2×

2Re

{
(ᾱ− α)

N∑
n=1

EpX
{xn − ᾱvn} vn

}
. (44)

By definition of data process in (12), EpX
{xn − ᾱvn} =

0, ∀n, then the minimum of Q̄N (α) is attained at α0,N = ᾱ.

This proves the consistency of α̂ under Assumption 1.

B. Asymptotic normality

The proof for the asymptotic normality of the LS estimator

α̂ mimics the one provided in standard statistical textbooks

(see e.g. [53, Ch. 9]) for the Maximum Likelihood estimator.

Let us start by taking the Taylor’s expansion of the real-valued

objective function GN (x, α) around the complex parameter ᾱ
[54, Th. 3.3]:

GN (x, α) ⋍ GN (x, ᾱ) + (α− ᾱ)
∂GN (x, α)

∂α

∣∣∣∣
α=ᾱ

+

+(α− ᾱ)∗
∂GN (x, α)

∂α∗

∣∣∣∣
α=ᾱ

+ |α− ᾱ|2 ∂2GN (x, α)

∂α∂α∗

∣∣∣∣
α=ᾱ

,

(45)

where we used the fact that:

∂2GN (x, α)

∂α2
=

∂2GN (x, α)

∂α∗2
= 0, ∀α. (46)

By using the Mean Value Theorem [53, Ch. 9], for some α̃
such that |α̃− ᾱ| < |α̂− ᾱ| we have:

∂GN (x, α)

∂α∗

∣∣∣∣
α=ᾱ

+ (α̂− ᾱ)
∂2GN (x, α)

∂α∂α∗

∣∣∣∣
α=α̃

= 0, (47)

where α̂ is defined in (13). Consequently, we obtain

α̂− ᾱ = −
(
∂2GN (x, α)

∂α∂α∗

∣∣∣∣
α=α̃

)−1
∂GN (x, α)

∂α∗

∣∣∣∣
α=ᾱ

. (48)

For simplicity, we define

AN (x, α) ,
1

N

∂2GN (x, α)

∂α∂α∗
, (49)

s(x, α) ,
∂GN (x, α)

∂α∗
, (50)
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and rewrite (48) as

√
N(α̂− ᾱ) = −AN (x, α̃)−1

(
1√
N

s(x, ᾱ)

)
. (51)

Through direct calculation, it easily follows that

AN (x, α) = N−1
N∑

n=1

|vn|2 = N−1||v||2 , AN , (52)

s(x, ᾱ) = −
N∑

n=1

v∗n (xn − ᾱvn) = −
N∑

n=1

v∗ncn, (53)

where cn = xn − ᾱvn,∀n. By substituting (52) and (53) into

(51), we get:

√
N(α̂− ᾱ) =

N

||v||2

(
1√
N

N∑

n=1

v∗ncn

)
. (54)

The asymptotic normality of α̂ follows from the application

of the Central Limit Theorem established for (strong) mixing

processes in [17, Th. 2.4] for the real scalar case and in [45]

for the real multivariate case. In particular, let us define

B̄N ≡ BN (ᾱ) , EpX

{
1√
N

s(x, ᾱ)
1√
N

s∗(x, ᾱ)

}

=
1

N

N∑

n=1

N∑

m=1

v∗nvmEpX
{cnc∗m}. (55)

Under Assumption 1, by exploiting [17, Th.3.2] and recalling

that {cn : ∀n} is a circular process, (17) follows.

APPENDIX B

ASYMPTOTIC DISTRIBUTION OF ΛRW

To establish the asymptotic distribution of ΛRW, we follow

the standard procedure discussed in [53, Ch. 9].

A. Asymptotic distribution of ΛRW under H0

We start by defining

ᾱH0
, 0 (56)

as the true parameter under the null hypothesis. Under H0,

from Theorem 1, we have that:

α̂
a.s.→

N→∞
ᾱH0

, (57)

√
NAN [BN (ᾱH0

)]
−1/2

α̂ ∼
N→∞

CN (0, 1). (58)

The inverse operator and the principal square root are both

continuous operators on R
+, then their composition is contin-

uous on R
+. Then, from (25) and by using the Continuous

Mapping Theorem [55, Theo. 2.7], it follows that:

[
B̂N (α̂)

]−1/2

− [BN (ᾱH0
)]
−1/2

≡ B̂
−1/2
N − [BN (0)]

−1/2 p→
N→∞

0. (59)

Let us rewrite the test in (25) as:

ΛRW(x) = 2
(√

NAN B̂
−1/2
N α̂

)∗ (√
NAN B̂

−1/2
N α̂

)
. (60)

From (58) and (59), by a direct application of the Slutsky’s

Theorem and of the properties of the complex Gaussian

distribution [48], we immediately obtain that:

ΛRW(x|H0) =2
(√

NAN B̂
−1/2
N α̂

)

︸ ︷︷ ︸
∼

N→∞

CN (0,1)

∗
×

(√
NAN B̂

−1/2
N α̂

)

︸ ︷︷ ︸
∼

N→∞

CN (0,1)

∼
N→∞

χ2
2(0), (61)

where χ2
2(0) indicates a central χ-squared random variable

with two degrees of freedom.

B. Asymptotic distribution of ΛRW under local alternatives

Following [53, Ch. 9], we suppose that the alternative to

H0 is of the form:

H1 : α = d/
√
N, d ∈ C. (62)

Note that, as stated in [53, Sec. 9.3], this choice is made

only for mathematical purposes, and has no direct physical

significance. Specifically, (62) allows us to approximate the

power of the test (or, in radar terminology, the probability

of detection) locally, i.e. in the neighbourhood of the null

hypothesis in (56). By defining ᾱ
(N)
H1

, d/
√
N as the true

parameter under local alternatives, we clearly have

lim
N→∞

ᾱ
(N)
H1

= ᾱH0
. (63)

If BN (ᾱ) in (55) is continuous in a neighbourhood of ᾱ, then

from (63) and (56) it follows that

lim
N→∞

BN (ᾱ
(N)
H1

) = BN (0). (64)

Under H1 in (62), from Theorem 1 we have

α̂− ᾱ
(N)
H1

a.s.→
N→∞

0, (65)

√
NAN

[
BN

(
ᾱ
(N)
H1

)]−1/2

(α̂− d/
√
N) ∼

N→∞
CN (0, 1).

(66)

As before, by using the Continuous Mapping Theorem [55,

Th. 2.7] and the limiting results in (64), we have

[
B̂N (α̂)

]−1/2

−
[
BN

(
ᾱ
(N)
H1

)]−1/2

≡ B̂
−1/2
N − [BN (0)]

−1/2 p→
N→∞

0. (67)

By recasting the test in (25) as in (60), from (66) and (67), by a

direct applications of the Slutsky’s Theorem, we immediately

obtain that:

ΛRW(x|H1) = 2
(√

NAN B̂
−1/2
N α̂

)∗

︸ ︷︷ ︸
∼

N→∞

CN(AN [BN (0)]−1/2d,1)

×

(√
NAN B̂

−1/2
N α̂

)

︸ ︷︷ ︸
∼

N→∞

CN(AN [BN (0)]−1/2d,1)

∼
N→∞

χ2
2

(
2|d2|A2

N [BN (0)]
−1
)
. (68)
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Note that, from (55) we have BN (0) = N−1
v
H
Γv. This

result can be used to approximate the power of the test, i.e.

the PD. By setting d ≡
√
Nᾱ, we have:

ΛRW(x|H1) ∼
N→∞

χ2
2

(
2|ᾱ|2||v||4
vHΓv

)
. (69)

By using the properties of the non-central χ-squared distribu-

tion with 2 degrees of freedom [49], a closed form expression

of the asymptotic probability of detection can be eventually

expressed as:

PD(λ) = Q1

(√
2|ᾱ|||v||2/

√
vHΓv,

√
λ
)
. (70)
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