629 research outputs found

    User Needs, Benefits, and Integration of Robotic Systems in a Space Station Laboratory

    Get PDF
    The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established

    Conservation management improves agroecosystem function and resilience of soil nitrogen cycling in response to seasonal changes in climate

    Get PDF
    Understanding how conservation agricultural management improves soil nitrogen (N) stability in the face of climate change can help increase agroecosystem productivity and mitigate runoff, leaching and downstream water quality issues. We conducted a 2-year field study in a 36-year-old rain-fed cotton production system to evaluate the impacts of changing climatic factors (temperature and precipitation) on soil N under conservation management, including moderate inorganic N fertilizer application (0 and 67 kg N ha−1 ), winter cover crops (fallow; winter wheat, Triticum aestivum L.; hairy vetch, Vicia villosa Roth), and reduced tillage (no-till; disk tillage). Structural equation modeling (SEM) was used to quantify and compare the effects of conservation management and climatic factors on soil N concentrations. Fertilizer and vetch cover crops increased soil total N concentration by 16% and 18%, respectively, and also increased microbial N transformation rate by 41% and 168%. In addition, vetch cover crops also increased soil labile N concentrations by 57%, 21%, and 79%, i.e., extractable organic N, ammonium, and nitrate, respectively. The highest soil δ15N value (6.4 ± 0.3‰) was observed under the 67 kg N ha−1 fertilizer-wheat-disk tillage treatment, and the lowest value (4.8 ± 0.3‰) under the zero-fertilizer-wheat-no-till treatment, indicating fertilizer and tillage might accelerate microbial N transformation. The SEM showed positive effects of temperature and precipitation on labile N concentrations, suggesting destabilization of soil N and the potential for soil N loss under increased temperature and intensified precipitation. Fertilizer and vetch use might mitigate some of the effects of temperature by accelerating microbial N transformations, with vetch having a larger effect than fertilizer (0.35 vs. 0.15, Table 1). No-till can reduce some of the effects of precipitation on soil labile N by maintaining soil structure. Our study suggests that fertilizer, vetch cover crop, and no-till might help improve function and resilience of agroecosystems in relation to soil N cycling. Soil N stabilization in cropping systems can be enhanced by adjusting agricultural management

    The Landscape of Reason: A Scheme for Representing Arguments Concerning Environmental, Health and Safety Effects of Chemical Weapons Disposal in the US

    Get PDF
    To reduce the risk of environmental contamination and honor an international treaty, chemical weapons stored at eight locales around the US are slated for destruction. Incineration is the main choice of a National Research Council committee directed by Congress to weigh the hazards of alternative destruction technologies, but many citizens\u27 groups remain unconvinced. The US Army, which must dispose of the dangerous chemicals, faces decisions about the choice of destruction technologies, as well as more specific questions concerning protection of environment, safety and public health once the technology choices are made. Based on more than 200 individual interviews and 40 focus groups held in communities near where the weapons are stored, this paper illustrates an argumentation scheme for representing the underlying reasons for varying positions in the conflict over technology choices. The argumentation scheme is effective in representing qualitative interview data concerning the complex and dynamic environmental perspectives of diverse regional and national constituencies

    PEG-ylated parenteral Nanoemulsions as prospective Carriers for enhanced Brain Delivery with Diazepam as a Model Drug - Physicochemical Characterisation

    Get PDF
    Parenteral nanoemulsions are regarded as biocompatible drug delivery systems for lypophilic drugs. When it comes to delivering actives to the brain as a target site, prolonged circulation time is desirable. The objective of this study was to conduct physicochemical characterization of PEGylated nanoemulsions as prospective carriers for enhanced brain delivery, using diazepam as a model active substance for brain targeting. Nanoemulsions were prepared by high pressure homogenization method and characterized regarding droplet size, zeta potential, pH, conductivity, viscosity and in vitro release profile. PEG2000-DSPE and PEG5000-DPPE were used for PEGylation. All the formulations were autoclaved and stored at room temperature. After 2 months there were no significant changes in physicochemical parameters in autoclaved formulations which rendered them as good potential templates to incorporate drugs for brain targeted delivery

    Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources

    Get PDF
    Campylobacter jejuni causes gastroenteritis with a variety of symptoms in humans. In the absence of a suitable animal model, in vitro models have been used to study virulence traits such as invasion and toxin production. In this study, 113 C. jejuni isolates from poultry and poultry-related (n=74) environments as well as isolates from human cases (n=39) of campylobacteriosis and bacteraemia were tested for invasiveness using INT 407 cells. The method was sufficiently reproducible to observe a spectrum of invasiveness amongst strains. As a result, strains were classified as low, high and hyper-invasive. The majority of strains (poultry and human) were low invaders (82 % and 88 %, respectively). High invasion was found for 5 % of human strains and 11 % of poultry-related isolates. However, only 1 % of poultry strains were classified as hyperinvasive compared to 13 % of human isolates (P=0.0182). Of those isolates derived from the blood of bacteraemic patients, 20 % were hyperinvasive, though this correlation was not statistically significant. An attempt was made to correlate invasiveness with the presence of seven genes previously reported to be associated with virulence. Most of these genes did not correlate with invasiveness, but gene cj0486 was weakly over-represented, and a negative correlation was observed for the gene ciaB. This trend was stronger when the two genes were analysed together, thus ciaB– cj0486+ was over-represented in high and hyperinvasive strains, with low invaders more commonly found to lack these genes (P=0.0064)

    The helminth parasite heligmosomoides polygyrus attenuates EAE in an IL-4Rα-dependent manner

    Get PDF
    Helminth parasites are effective in biasing Th2 immunity and inducing regulatory pathways that minimize excessive inflammation within their hosts, thus allowing chronic infection to occur whilst also suppressing bystander atopic or autoimmune diseases. Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory lesions within the central nervous system; there are very limited therapeutic options for the progressive forms of the disease and none are curative. Here, we used the experimental autoimmune encephalomyelitis (EAE) model to examine if the intestinal helminth Heligmosomoides polygyrus and its excretory/secretory products (HES) are able to suppress inflammatory disease. Mice infected with H. polygyrus at the time of immunization with the peptide used to induce EAE (myelin-oligodendrocyte glycoprotein, pMOG), showed a delay in the onset and peak severity of EAE disease, however, treatment with HES only showed a marginal delay in disease onset. Mice that received H. polygyrus 4 weeks prior to EAE induction were also not significantly protected. H. polygyrus secretes a known TGF-β mimic (Hp-TGM) and simultaneous H. polygyrus infection with pMOG immunization led to a significant expansion of Tregs; however, administering the recombinant Hp-TGM to EAE mice failed to replicate the EAE protection seen during infection, indicating that this may not be central to the disease protecting mechanism. Mice infected with H. polygyrus also showed a systemic Th2 biasing, and restimulating splenocytes with pMOG showed release of pMOG-specific IL-4 as well as suppression of inflammatory IL-17A. Notably, a Th2-skewed response was found only in mice infected with H. polygyrus at the time of EAE induction and not those with a chronic infection. Furthermore, H. polygyrus failed to protect against disease in IL-4Rα−/− mice. Together these results indicate that the EAE disease protective mechanism of H. polygyrus is likely to be predominantly Th2 deviation, and further highlights Th2-biasing as a future therapeutic strategy for MS

    Hematopoietic stem and progenitor cells are present in healthy gingiva tissue

    Get PDF
    Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier

    Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway

    Get PDF
    Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA-supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase- and CYP-dependent pathways. Raising the Omega-3 Index from about 4 to 8 primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived lipoxygenase-dependent monohydroxy-metabolites including the precursors of resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA-supplementation
    corecore