10,614 research outputs found

    A node-wise analysis of the uterine muscle networks for pregnancy monitoring

    Full text link
    The recent past years have seen a noticeable increase of interest in the correlation analysis of electrohysterographic (EHG) signals in the perspective of improving the pregnancy monitoring. Here we propose a new approach based on the functional connectivity between multichannel (4x4 matrix) EHG signals recorded from the women abdomen. The proposed pipeline includes i) the computation of the statistical couplings between the multichannel EHG signals, ii) the characterization of the connectivity matrices, computed by using the imaginary part of the coherence, based on the graph-theory analysis and iii) the use of these measures for pregnancy monitoring. The method was evaluated on a dataset of EHGs, in order to track the correlation between EHGs collected by each electrode of the matrix (called node-wise analysis) and follow their evolution along weeks before labor. Results showed that the strength of each node significantly increases from pregnancy to labor. Electrodes located on the median vertical axis of the uterus seemed to be the more discriminant. We speculate that the network-based analysis can be a very promising tool to improve pregnancy monitoring.Comment: 4 pages, 3 figures, accepted in the IEEE EMBC conferanc

    The Use of Local Mineral Formulas as a Feed Block Supplement for Beef Cattle Fed on Wild Forages

    Get PDF
    The present research was carried out to study the diversity of mineral contents of wild forages and to evaluate the beneficial effect of mineral feed supplement formulated by using locally available materials on the performances of beef cattle. The present research was initiated by analyzing mineral contents of wild forages grown around Limau Manis campus areas. Forage samples were collected at 9 sampling areas scattered at plantation, conservation and idle lands. Samples were then analyzed for macro minerals of Ca, P, Mg, K, Na, and S and micro minerals of Co, Cu, Fe, Mn, Se, and Zn. Feeding trial was then conducted to evaluate the beneficial effect of supplementation of local mineral formulas (LMF) produced by using locally available materials on the performances of cattle. Feeding trial was conducted for 6 weeks by using 9 Simmentals cross bred heifers. The trial consisted of 3 treatments, i.e., P1: only grass without supplementation, P2: grass + LMF and P3: grass + mineral premix enriched LMF. Variables measured were: body weight, feed intake, FCR, feed cost and net return. Results showed that the highest macro mineral content of wild forages was Na of about 13.05±2.22 g/kg, varied from 4.1 to 23.8 g/kg, followed by K (11.09±1.43 g/kg) and Ca (6.10±1.09 g/kg DM). Three minerals of Mg, P, and S were found in relatively small concentrations of 1.34±0.30, 0.83±0.23, and 0.17±0.01 g/kg, respectively. Fe, Mn, Cu and Zn were found in relatively high concentrations. The highest concentration of micro minerals was Fe of about 613.8±128.9 mg/kg, followed by Mn of 143.9±23.3 mg/kg, while Zn and Cu were found in relatively small amount of about 31.3±5.5 and 13.2±2.5 mg/kg, respectively. Heifers supplemented with LMF (P2) and mineral premix enriched LMF (P3) showed higher body weight gain, lower FCR and net return than those cattle fed only grass (P1). The most profitable feeding strategy was by supplementation of heifers with mineral premix enriched LMF.Key words: wild forage quality, local mineral formula, ruminant mineral nutritio

    Low scale B-L extension of the Standard Model at the LHC

    Get PDF
    The fact that neutrinos are massive indicates that the Standard Model (SM) requires extension. We propose a low energy (<TeV) B-L extension of the SM, which is based on the gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}. We show that this model provides a natural explanation for the presence of three right-handed neutrinos in addition to an extra gauge boson and a new scalar Higgs. Therefore, it can lead to very interesting phenomenological implications different from the SM results which can be tested at the LHC. Also we analyze the muon anomalous magnetic moment in this class of models. We show that one-loop with exchange Z' may give dominant new contribution ~ few x 10^{-11}.Comment: 12 page

    Annual medicago ecotypes from North West Libya

    Get PDF
    Nine Medicago species were represented in collections from 10 sites in North West Libya. This report outlines species distribution, maturity characteristics and coumestrol content of the ecotypes collected. Medicago laciniata was the most common species collected but there appeared to be a relationship to soil type amongst other species. M. truncatula predominated on heavier textured soils but M. tornata and M. littoralis were more frequent on sandy soils. The Libyan ecotypes were typically early flowering with a rapid rate of burr maturation. They contained low to moderate levels of the plant oestrogen coumestrol in dry stems. Evaluation work was carried out at Medina Research Station, 20 km south of Perth, Western Australia

    Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

    Get PDF
    In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually

    Dynamic power dissipation formulation for application in dynamic programming buffer insertion algorithm

    Get PDF
    Buffer insertion is a very effective technique to reduce propagation delay in nano-metre VLSI interconnects. There are two techniques for buffer insertion which are: (1) closed-form solution and (2) dynamic programming. Buffer insertion algorithm using dynamic programming is more useful than the closed-form solution as it allows the use of multiple buffer types and it can be used in tree structured interconnects. As design dimension shrinks, more buffers are needed to improve timing performance. However, the buffer itself consumes power and it has been shown that power dissipation of buffers is significant. Although there are many buffer insertion algorithms that were able to optimize propagation delay with power constraint, most of them used the closed-form solution. Hence, in this paper, we present a formulation to compute dynamic power dissipation of buffers for application in dynamic programming buffer insertion algorithm. The proposed formulation allows dynamic power dissipation of buffers to be computed incrementally. The technique is validated by comparing the formulation with the standard closed-form dynamic power equation. The advantage of the proposed formulation is demonstrated through a series of experiments where it is applied in van Ginneken’s algorithm. The results show that the output of the proposed formulation is consistent with the standard closed-form formulation. Furthermore, it also suggests that the proposed formulation is able to compute dynamic power dissipation for buffer insertion algorithm with multiple buffer types

    Shear Behavior of Steel I-Beams Strengthened With CFRP Strips

    Full text link
    This paper studies the behavior of simply supported steel I-beams strengthened with carbon fiber reinforced polymers (CFRP) strips on the web as shear reinforcement. The experimental program contains seven simply supported steel beams. One of them was considered as a control beam and the other specimens were strengthened with different schemes; varying the position of CFRP strips to the web, its number of layers and its angle of orientation. The results show that applying CFRP strips on the web of the steel I-beams was an effective strengthening method for increasing the load bearing capacity and decreasing the deformations. Using two layers of diagonal CFRP strips on both sides of the web realized the highest increasing in the load capacity. Moreover, finite element analysis method has been utilized to analyze the tested specimens using ANSYS. A great convergence between the experimental results and the corresponding ones obtained from finite element simulation

    Effective-action model for dynamical scalarization beyond the adiabatic approximation

    Get PDF
    In certain scalar-field extensions to general relativity, scalar charges can develop on compact objects in an inspiraling binary -- an effect known as dynamical scalarization. This effect can be modeled using effective-field-theory methods applied to the binary within the post-Newtonian approximation. Past analytic investigations focused on the adiabatic (or quasi-stationary) case for quasi-circular orbits. In this work, we explore the full dynamical evolution around the phase transition to the scalarized regime. This allows for generic (eccentric) orbits and to quantify nonadiabatic (e.g., oscillatory) behavior during the phase transition. We also find that even in the circular-orbit case, the onset of scalarization can only be predicted reliably when taking the full dynamics into account, i.e., the adiabatic approximation is not appropriate. Our results pave the way for accurate post-Newtonian predictions for dynamical scalarization effects in gravitational waves from compact binaries
    corecore