2,038 research outputs found

    Numerical simulation of mesoscale precipitation

    Get PDF
    The numerical simulation of mesoscale precipitation as well as the development of software and appropriate computer techniques are investigated. The development of a mesoscale model and the means to incorporate meteorological data into the model are examined

    Low-voltage organic transistors and inverters with ultra-thin fluoropolymer gate dielectric

    Full text link
    We report on the simple fabrication of hysteresis-free and electrically stable organic field-effect transistors (OFETs) and inverters operating at voltages <1-2 V, enabled by the almost trap-free interface between the organic semiconductor and an ultra-thin (<20 nm) and highly insulating single-layer fluoropolymer gate dielectric (Cytop). OFETs with PTCDI-C13 (N,N'-ditridecylperylene-3,4,9,10-tetracarboxylicdiimide) as semiconductor exhibit outstanding transistor characteristics: very low threshold voltage (0.2V), onset at 0V, steep subthreshold swing (0.1-0.2 V/decade), no hysteresis and excellent stability against gate bias stress. It is gratifying to notice that such small OFET operating voltages can be achieved with the relatively simple processing techniques employed in this study.Comment: Accepted for publication in Applied Physics Letter

    Renormalizability and Quantum Stability of the Phase Transition in Rigid String Coupled to Kalb-Ramond Fields II

    Get PDF
    Recently we have shown that a phase transition occurs in the leading approximation of the large N limit in rigid strings coupled to long range Kalb-Ramond interactions. The disordered phase is essentially the Nambu-Goto-Polyakov string theory while the ordered phase is a new theory. In this part II letter we study the first sub-leading quantum corrections we started in I. We derive the renormalized mass gap equation and obtain the renormalized critical line of the interacting theory. Our main and final result is that the phase transition does indeed survive quantum fluctuations.Comment: PHYZZX, 11 pages, 2 Postscript figure, to be published in Nucl.Phys.

    Dimensionless Coupling of Superstrings to Supersymmetric Gauge Theories and Scale Invariant Superstring Actions

    Full text link
    We construct new superstring actions which are distinguished from standard superstrings by being space-time scale invariant. Like standard superstrings, they are also reparametrization invariant, space-time supersymmetric, and invariant under local scale transformations of the world sheet. We discuss scenarios in which these actions could play a significant role, in particular one which involves their coupling to supersymmetric gauge theories.Comment: 9 pages, LaTe

    Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th

    Full text link
    The isomeric first excited state of the isotope 229Th exhibits the lowest nuclear excitation energy in the whole landscape of known atomic nuclei. For a long time this energy was reported in the literature as 3.5(5) eV, however, a new experiment corrected this energy to 7.6(5) eV, corresponding to a UV transition wavelength of 163(11) nm. The expected isomeric lifetime is τ=\tau= 3-5 hours, leading to an extremely sharp relative linewidth of Delta E/E ~ 10^-20, 5-6 orders of magnitude smaller than typical atomic relative linewidths. For an adequately chosen electronic state the frequency of the nuclear ground-state transition will be independent from influences of external fields in the framework of the linear Zeeman and quadratic Stark effect, rendering 229mTh a candidate for a reference of an optical clock with very high accuracy. Moreover, in the literature speculations about a potentially enhanced sensitivity of the ground-state transition of 229m^{229m}Th for eventual time-dependent variations of fundamental constants (e.g. fine structure constant alpha) can be found. We report on our experimental activities that aim at a direct identification of the UV fluorescence of the ground-state transition energy of 229mTh. A further goal is to improve the accuracy of the ground-state transition energy as a prerequisite for a laser-based optical control of this nuclear excited state, allowing to build a bridge between atomic and nuclear physics and open new perspectives for metrological as well as fundamental studies

    Spacetime torsion and parity violation: a gauge invariant formulation

    Get PDF
    The possibility of parity violation through spacetime torsion has been explored in a scenario containing fields with different spins. Taking the Kalb-Ramond field as the source of torsion, an explicitly parity violating U(1)EMU(1)_{EM} gauge invariant theory has been constructed by extending the KR field with a Chern-Simons term.Comment: 4 pages, RevTe

    The finiteness of the four dimensional antisymmetric tensor field model in a curved background

    Full text link
    A renormalizable rigid supersymmetry for the four dimensional antisymmetric tensor field model in a curved space-time background is constructed. A closed algebra between the BRS and the supersymmetry operators is only realizable if the vector parameter of the supersymmetry is a covariantly constant vector field. This also guarantees that the corresponding transformations lead to a genuine symmetry of the model. The proof of the ultraviolet finiteness to all orders of perturbation theory is performed in a pure algebraic manner by using the rigid supersymmetry.Comment: 23 page

    Robust quantum-network memory using decoherence-protected subspaces of nuclear spins

    Full text link
    The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy (NV) center electronic spin hyperfine-coupled to nearby nuclear spins. We demonstrate individual control and readout of five nuclear spin qubits within one node. We then characterize the storage of quantum superpositions in individual nuclear spins under repeated application of a probabilistic optical inter-node entangling protocol. We find that the storage fidelity is limited by dephasing during the electronic spin reset after failed attempts. By encoding quantum states into a decoherence-protected subspace of two nuclear spins we show that quantum coherence can be maintained for over 1000 repetitions of the remote entangling protocol. These results and insights pave the way towards remote entanglement purification and the realisation of a quantum repeater using NV center quantum network nodes

    Defect healing at room temperature in pentacene thin films and improved transistor performance

    Full text link
    We report on a healing of defects at room temperature in the organic semiconductor pentacene. This peculiar effect is a direct consequence of the weak intermolecular interaction which is characteristic of organic semiconductors. Pentacene thin-film transistors were fabricated and characterized by in situ gated four-terminal measurements. Under high vacuum conditions (base pressure of order 10E-8 mbar), the device performance is found to improve with time. The effective field-effect mobility increases by as much as a factor of two and mobilities up to 0.45 cm2/Vs were achieved. In addition, the contact resistance decreases by more than an order of magnitude and there is a significant reduction in current hysteresis. Oxygen/nitrogen exposure and annealing experiments show the improvement of the electronic parameters to be driven by a thermally promoted process and not by chemical doping. In order to extract the spectral density of trap states from the transistor characteristics, we have implemented a powerful scheme which allows for a calculation of the trap densities with high accuracy in a straightforward fashion. We show the performance improvement to be due to a reduction in the density of shallow traps <0.15 eV from the valence band edge, while the energetically deeper traps are essentially unaffected. This work contributes to an understanding of the shallow traps in organic semiconductors and identifies structural point defects within the grains of the polycrystalline thin films as a major cause.Comment: 13 pages, 13 figures, to be published in Phys. Rev.

    Radiative Corrections in a Vector-Tensor Model

    Full text link
    In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field
    corecore