We report on a healing of defects at room temperature in the organic
semiconductor pentacene. This peculiar effect is a direct consequence of the
weak intermolecular interaction which is characteristic of organic
semiconductors. Pentacene thin-film transistors were fabricated and
characterized by in situ gated four-terminal measurements. Under high vacuum
conditions (base pressure of order 10E-8 mbar), the device performance is found
to improve with time. The effective field-effect mobility increases by as much
as a factor of two and mobilities up to 0.45 cm2/Vs were achieved. In addition,
the contact resistance decreases by more than an order of magnitude and there
is a significant reduction in current hysteresis. Oxygen/nitrogen exposure and
annealing experiments show the improvement of the electronic parameters to be
driven by a thermally promoted process and not by chemical doping. In order to
extract the spectral density of trap states from the transistor
characteristics, we have implemented a powerful scheme which allows for a
calculation of the trap densities with high accuracy in a straightforward
fashion. We show the performance improvement to be due to a reduction in the
density of shallow traps <0.15 eV from the valence band edge, while the
energetically deeper traps are essentially unaffected. This work contributes to
an understanding of the shallow traps in organic semiconductors and identifies
structural point defects within the grains of the polycrystalline thin films as
a major cause.Comment: 13 pages, 13 figures, to be published in Phys. Rev.