244 research outputs found

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    Molecular Evidence for Multiple Lineages in the Gorgonian Family Plexauridae (Anthozoa: Octocorallia)

    Get PDF
    Octocorals are diverse and abundant on many marine hard substrates, and, within this group, members of the family Plexauridae are an important component of tropical reef assemblages, especially in the Caribbean. To understand historical relationships within this large and diverse assemblage, and to test the monophyly of the family and some of its genera, DNA sequences of two mitochondrial loci (msh1 and ND2, ~1,185 bp) were analyzed from 46 species in 21 genera from deep and shallow waters in the tropical western Atlantic and in the tropical western and eastern Pacific (plus 9 taxa in the closely related Gorgoniidae and 1 species of the more distantly related Alcyoniidae). Five strongly supported clades were recovered. Three large clades correspond roughly to the Plexauridae, Paramuriceidae, and Gorgoniidae, and two smaller clades were comprised of taxa previously assigned to several families. Astrogorgia sp. did not group with any of the clades. The mutual relationships among the five clades remain unclear. Several genera previously regarded as unrelated appear to be grouped among the three “families”; e.g. Hypnogorgia sp. (Paramuriceidae) falls within a clade consisting of both Pacific and Atlantic Muricea spp. (Plexauridae), while Swiftia sp., Scleracis sp., and an Atlantic Thesea sp. (all Paramuriceidae) group with the gorgoniids. In several instances, genera containing Atlantic and Pacific species were recovered as monophyletic (Muricea spp., Bebryce spp.). However, in at least three cases (Echinomuricea spp., Thesea spp.,Villogorgia spp.), placement of Atlantic and Pacific species in the same genus may reflect convergence of sclerite morphology. The results indicate a strong need for reexamination of octocoral taxonomy using a combination of molecular, morphological, and chemical evidence

    A Streamlined DNA Tool for Global Identification of Heavily Exploited Coastal Shark Species (Genus Rhizoprionodon)

    Get PDF
    Obtaining accurate species-specific landings data is an essential step toward achieving sustainable shark fisheries. Globally distributed sharpnose sharks (genus Rhizoprionodon) exhibit life-history characteristics (rapid growth, early maturity, annual reproduction) that suggests that they could be fished in a sustainable manner assuming an investment in monitoring, assessment and careful management. However, obtaining species-specific landings data for sharpnose sharks is problematic because they are morphologically very similar to one another. Moreover, sharpnose sharks may also be confused with other small sharks (either small species or juveniles of large species) once they are processed (i.e., the head and fins are removed). Here we present a highly streamlined molecular genetics approach based on seven species-specific PCR primers in a multiplex format that can simultaneously discriminate body parts from the seven described sharpnose shark species commonly occurring in coastal fisheries worldwide. The species-specific primers are based on nucleotide sequence differences among species in the nuclear ribosomal internal transcribed spacer 2 locus (ITS2). This approach also distinguishes sharpnose sharks from a wide range of other sharks (52 species) and can therefore assist in the regulation of coastal shark fisheries around the world

    Tourism, inclusive growth and decent work: a political economy critique

    Get PDF
    This paper interrogates the ideas of ‘sustained’ and ‘inclusive’ growth that are intrinsic to one of three UN Sustainable Development Goals (SDG 8 - Decent Work and Growth) adopted by the UN World Tourism Organisation’s (UNWTO) 2030 sustainable tourism agenda. It provides a Marxian-inspired political economy critique of the UNWTO’s embrace of SDG8 and highlights the blind spot within the UNWTO’s inclusive growth-led SDG agenda with respect to questions of equity and social justice. The paper contends that the UNWTO’s SDG-led agenda is contradicted by the logics of growth, competitiveness and profit-making that drive the continued expansion and development of tourism. Rather than addressing the structural injustices that entrench inequalities and reproduce exploitative labour practices, the notion of sustained and inclusive growth reinforces the primacy of capital and market notions of justice and continues to perpetuate a growth driven tourism development model. The paper contributes to a critical theorization of sustainable tourism and offers an informed critique of the current political agenda for sustainable tourism and its potential outcomes

    The Xpc gene markedly affects cell survival in mouse bone marrow

    Get PDF
    The XPC protein (encoded by the xeroderma pigmentosum Xpc gene) is a key DNA damage recognition factor that is required for global genomic nucleotide excision repair (G-NER). In contrast to transcription-coupled nucleotide excision repair (TC-NER), XPC and G-NER have been reported to contribute only modestly to cell survival after DNA damage. Previous studies were conducted using fibroblasts of human or mouse origin. Since the advent of Xpc−/− mice, no study has focused on the bone marrow of these mice. We used carboplatin to induce DNA damage in Xpc−/− and strain-matched wild-type mice. Using several independent methods, Xpc−/− bone marrow was ∼10-fold more sensitive to carboplatin than the wild type. Importantly, 12/20 Xpc−/− mice died while 0/20 wild-type mice died. We conclude that G-NER, and XPC specifically, can contribute substantially to cell survival. The data are important in the context of cancer chemotherapy, where Xpc gene status and G-NER may be determinants of response to DNA-damaging agents including carboplatin. Additionally, altered cell cycles and altered DNA damage signalling may contribute to the cell survival end point

    Slip-Sliding Away: Serial Changes and Homoplasy in Repeat Number in the Drosophila yakuba Homolog of Human Cancer Susceptibility Gene BRCA2

    Get PDF
    Several recent studies have examined the function and evolution of a Drosophila homolog to the human breast cancer susceptibility gene BRCA2, named dmbrca2. We previously identified what appeared to be a recent expansion in the RAD51-binding BRC-repeat array in the ancestor of Drosophila yakuba. In this study, we examine patterns of variation and evolution of the dmbrca2 BRC-repeat array within D. yakuba and its close relatives. We develop a model of how unequal crossing over may have produced the expanded form, but we also observe short repeat forms, typical of other species in the D. melanogaster group, segregating within D. yakuba and D. santomea. These short forms do not appear to be identical-by-descent, suggesting that the history of dmbrca2 in the D. melanogaster subgroup has involved repeat unit contractions resulting in homoplasious forms. We conclude that the evolutionary history of dmbrca2 in D. yakuba and perhaps in other Drosophila species may be more complicated than can be inferred from examination of the published single genome sequences per species

    A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange

    Get PDF
    Human BRCA2, a breast and ovarian cancer suppressor, binds to the DNA recombinase RAD51 through eight conserved BRC repeats, motifs of similar to 30 residues, dispersed across a large region of the protein. BRCA2 is essential for homologous recombination in vivo, but isolated BRC repeat peptides can prevent the assembly of RAD51 into active nucleoprotein filaments in vitro, suggesting a model in which BRCA2 sequesters RAD51 in undamaged cells, and promotes recombinase function after DNA damage. How BRCA2 might fulfill these dual functions is unclear. We have purified a fragment of human BRCA2 (BRCA2(BRC1-8)) with 1127 residues spanning all 8 BRC repeats but excluding the C-terminal DNA-binding domain (BRCA2(CTD)). BRCA2(BRC1-8) binds RAD51 nucleoprotein filaments in a ternary complex, indicating it may organize RAD51 on DNA. Human RAD51 is relatively ineffective in vitro at strand exchange between homologous DNA molecules unless non-physiological ions like NH+4 are present. In an ionic milieu more typical of the mammalian nucleus, BRCA2(BRC1-8) stimulates RAD51-mediated strand exchange, suggesting it may be an essential co-factor in vivo. Thus, the human BRC repeats, embedded within their surronding sequences as an eight-repeat unit, mediate homologous recombination independent of the BRCA2(CTD) through a previously unrecognized role in control of RAD51 activity.This work was supported by a Senior Non-Clinical Fellowship to L.P. from the Wellcome Trust and a BBSRC PhD studentship to O.R.D., and in ARV's laboratory by the Medical Research Council and a Cancer Research UK PhD studentship to D.L.B. Funding to pay the Open Access publication charges for this article was provided by the Medical Research Council

    The Epistatic Relationship between BRCA2 and the Other RAD51 Mediators in Homologous Recombination

    Get PDF
    RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA–damage site
    corecore