250 research outputs found

    Interaction and Cooperative Nucleation of InAsSbP Quantum Dots and Pits on InAs(100) Substrate

    Get PDF
    An example of InAsSbP quaternary quantum dots (QDs), pits and dots–pits cooperative structures’ growth on InAs(100) substrates by liquid phase epitaxy (LPE) is reported. The interaction and surface morphology of the dots–pits combinations are investigated by the high-resolution scanning electron microscope. Bimodal growth mechanism for the both QDs and pits nucleation is observed. Cooperative structures consist of the QDs banded by pits, as well as the “large” pits banded by the quantum wires are detected. The composition of the islands and the pits edges is found to be quaternary, enriched by antimony and phosphorus, respectively. This repartition is caused by dissociation of the wetting layer, followed by migration (surface diffusion) of the Sb and P atoms in opposite directions. The “small” QDs average density ranges from 0.8 to 2 × 109 cm−2, with heights and widths dimensions from 2 to 20 nm and 5 to 45 nm, respectively. The average density of the “small” pits is equal to (6–10) × 109 cm−2 with dimensions of 5–40 nm in width and depth. Lifshits–Slezov-like distribution for the amount and surface density of both “small” QDs and pits versus their average diameter is experimentally detected. A displacement of the absorption edge toward the long wavelength region and enlargement toward the short wavelength region is detected by the Fourier transform infrared spectrometry

    Possibility of use of information technologies in archaelogical research

    Get PDF
    The research sets an objective to consider the efficiency of IT application in archeological studies by the example of mobile package design, intended for archeological studies

    Glycans as receptors for influenza pathogenesis

    Get PDF
    Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.National Institute of General Medical Sciences (U.S.) (Glue Grant U54 GM62116)National Institutes of Health (U.S.) (Grant GM57073)Singapore-MIT Alliance for Research and Technolog

    Adiabatic description of nonspherical quantum dot models

    Full text link
    Within the effective mass approximation an adiabatic description of spheroidal and dumbbell quantum dot models in the regime of strong dimensional quantization is presented using the expansion of the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the peculiarities are considered for spectral and optical characteristics of the models with axially symmetric confining potentials depending on their geometric size making use of the total sets of exact and adiabatic quantum numbers in appropriate analytic approximations

    The Infection of Chicken Tracheal Epithelial Cells with a H6N1 Avian Influenza Virus

    Get PDF
    Sialic acids (SAs) linked to galactose (Gal) in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1–3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI) avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry

    1918 Influenza: the Mother of All Pandemics

    Get PDF
    The "Spanish" influenza pandemic of 1918–1919, which caused ≈50 million deaths worldwide, remains an ominous warning to public health. Many questions about its origins, its unusual epidemiologic features, and the basis of its pathogenicity remain unanswered. The public health implications of the pandemic therefore remain in doubt even as we now grapple with the feared emergence of a pandemic caused by H5N1 or other virus. However, new information about the 1918 virus is emerging, for example, sequencing of the entire genome from archival autopsy tissues. But, the viral genome alone is unlikely to provide answers to some critical questions. Understanding the 1918 pandemic and its implications for future pandemics requires careful experimentation and in-depth historical analysis

    Recent advances in symmetric and network dynamics

    Get PDF
    We summarize some of the main results discovered over the past three decades concerning symmetric dynamical systems and networks of dynamical systems, with a focus on pattern formation. In both of these contexts, extra constraints on the dynamical system are imposed, and the generic phenomena can change. The main areas discussed are time-periodic states, mode interactions, and non-compact symmetry groups such as the Euclidean group. We consider both dynamics and bifurcations. We summarize applications of these ideas to pattern formation in a variety of physical and biological systems, and explain how the methods were motivated by transferring to new contexts René Thom's general viewpoint, one version of which became known as “catastrophe theory.” We emphasize the role of symmetry-breaking in the creation of patterns. Topics include equivariant Hopf bifurcation, which gives conditions for a periodic state to bifurcate from an equilibrium, and the H/K theorem, which classifies the pairs of setwise and pointwise symmetries of periodic states in equivariant dynamics. We discuss mode interactions, which organize multiple bifurcations into a single degenerate bifurcation, and systems with non-compact symmetry groups, where new technical issues arise. We transfer many of the ideas to the context of networks of coupled dynamical systems, and interpret synchrony and phase relations in network dynamics as a type of pattern, in which space is discretized into finitely many nodes, while time remains continuous. We also describe a variety of applications including animal locomotion, Couette–Taylor flow, flames, the Belousov–Zhabotinskii reaction, binocular rivalry, and a nonlinear filter based on anomalous growth rates for the amplitude of periodic oscillations in a feed-forward network

    1918 Influenza Pandemic and Highly Conserved Viruses with Two Receptor-Binding Variants

    Get PDF
    The “Spanish influenza pandemic swept the globe in the autumn and winter of 1918–19, and resulted in the deaths of approximately 40 million people. Clinically, epidemiologically, and pathologically, the disease was remarkably uniform, which suggests that similar viruses were causing disease around the world. To assess the homogeneity of the 1918 pandemic influenza virus, partial hemagglutinin gene sequences have been determined for five cases, including two newly identified samples from London, United Kingdom. The strains show 98.9% to 99.8% nucleotide sequence identity. One of the few differences between the strains maps to the receptor-binding site of hemagglutinin, suggesting that two receptor-binding configurations were co-circulating during the pandemic. The results suggest that in the early stages of an influenza A pandemic, mutations that occur during replication do not become fixed so that a uniform “consensus” strain circulates for some time
    corecore