18 research outputs found

    A case of penile fracture with complete urethral disruption during sexual intercourse: a case report

    Get PDF
    Penile fracture is a rare condition. Primarily it is a rupture of the corpus cavernosum that occurs when the penis is erect. The rupture can also affect the corpus spongiosum and the urethra. We report a case of a 37 year old man who presented with acute penile pain, penile swelling and the inability to pass urine after a blunt trauma during sexual intercourse. In emergency surgery we found bilateral partial rupture of the corpus cavernosum with complete urethral and corpus spongiosum disruption. In the one year follow up the patient presented with normal erectile and voiding function. Emergency surgical repair in penile fracture can preserve erectile and voiding function

    Transparenz und Evaluierbarkeit des erziehungswissenschaftlichen Publikationsaufkommens. Eine anwendungsorientierte Studie

    Get PDF
    Der Beitrag stellt Ziele und erste Ergebnisse des DFG-Projekts "Innovative bibliometrische Verfahren zur kontinuierlichen Beobachtung der sozialwissenschaftlichen Forschungsproduktion" vor. Eine Analyse des Publikationsverhaltens von Erziehungswissenschaftlern zeigt die große Bedeutung des Publikationstyps Sammelwerksbeitrag und der Publikationssprache Deutsch, aber auch eine ausgeprägte Heterogenität in der Publikationspraxis von erziehungswissenschaftlichen Institutionen. Skizziert wird schließlich der Vorschlag für einen neuen, dieser Publikationspraxis angemessenen, bibliometrischen Indikator. (DIPF/Autor

    Exchange bias effect in alloys and compounds

    Full text link
    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance

    Fractal nematic colloids

    Full text link
    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter

    Effect of Pressure on Magnetic Properties of (NH3OH)2CoF4(NH_3OH)_2CoF_4 Fluoro-Metal Complex

    No full text
    Effect of pressure on magnetic properties of a bulk fluoro-metal complex (NH3OH)2MF4(NH_3OH)_2MF_4 was studied. Magnetization measurements suggest that a ferromagnetic transition at TC1T_{C1} = 47 K is followed by a ferrimagnetic one at TC2T_{C2} = 3 K. Both transition temperatures are pressure dependent with the pressure coefficients dTC1dT_{C1}/ dp = - 2.6 K/GPa and dTC2dT_{C2}/ dp = 0.26 K/GPa. The opposite sign of the coefficients is an additional indication of a different nature (ferromagnetic/antiferromagnetic) of these two transitions. The effect of pressure on low field magnetization and exchange bias phenomena is small but still visible

    Structural and magnetic properties of nanocrystalline bismuth manganite obtained by mechanochemical synthesis

    No full text
    We have studied the formation of BiMnO3 (BMO) nanocrystalline perovskite powder produced by high-energy milling of the constituent oxides. The crystal structure and the amount of crystalline and amorphous phases in the powder as a function of the milling time were determined with XRPD using Rietveld refinement. BMO perovskite formed directly from highly activated nano-sized constituent oxides after 240 min of milling and subsequently grew during prolonged milling. The morphology, structure, and chemical composition of the powder were investigated by SEM and TEM. A clear ferromagnetic transition was observed at T C ~66 K for a sample milled for 240 min and increased with milling time. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. The magnetic properties of the obtained BMO powders were found to change as a function of milling time in a manner consistent with variations in the nanocomposite microstructure

    Bacterial chemotaxis and entropy production

    No full text
    Entropy production is calculated for bacterial chemotaxis in the case of a migrating band of bacteria in a capillary tube. It is found that the speed of the migrating band is a decreasing function of the starting concentration of the metabolizable attractant. The experimentally found dependence of speed on the starting concentration of galactose, glucose and oxygen is fitted with power-law functions. It is found that the corresponding exponents lie within the theoretically predicted interval. The effect of the reproduction of bacteria on band speed is considered, too. The acceleration of the band is predicted due to the reproduction rate of bacteria. The relationship between chemotaxis, the maximum entropy production principle and the formation of self-organizing structure is discussed

    A dual-wavelength photothermal aerosol absorption monitor

    No full text
    There exists a lack of aerosol absorption measurement techniques with low uncertainties and without artefacts. We have developed the two-wavelength Photothermal Aerosol Absorption Monitor (PTAAM-2λ), which measures the aerosol absorption coefficient at 532 and 1064 nm. Here we describe its design, calibration and mode of operation and evaluate its applicability, limits and uncertainties. The 532 nm channel was calibrated with ∼ 1 µmol mol−1 NO2, whereas the 1064 nm channel was calibrated using measured size distribution spectra of nigrosin particles and a Mie calculation. Since the aerosolized nigrosin used for calibration was dry, we determined the imaginary part of the refractive index of nigrosin from the absorbance measurements on solid thin film samples. The obtained refractive index differed considerably from the one determined using aqueous nigrosin solution. PTAAM-2λ has no scattering artefact and features very low uncertainties: 4 % and 6 % for the absorption coefficient at 532 and 1064 nm, respectively, and 9 % for the absorption Ångström exponent. The artefact-free nature of the measurement method allowed us to investigate the artefacts of filter photometers. Both the Aethalometer AE33 and CLAP suffer from cross-sensitivity to scattering – this scattering artefact is most pronounced for particles smaller than 70 nm. We observed a strong dependence of the filter multiple scattering parameter on the particle size in the 100–500 nm range. The results from the winter ambient campaign in Ljubljana showed similar multiple scattering parameter values for ambient aerosols and laboratory experiments. The spectral dependence of this parameter resulted in AE33 reporting the absorption Ångström exponent for different soot samples with values biased 0.23–0.35 higher than the PTAAM-2λ measurement. Photothermal interferometry is a promising method for reference aerosol absorption measurements
    corecore