193 research outputs found

    Fine tuning Exo2, a small molecule inhibitor of secretion and retrograde trafficking pathways in mammalian cells

    Get PDF
    The small molecule 4-hydroxy-3-methoxybenzaldehyde (5,6,7,8-tetrahydro[1]benzothieno[2,3- d]pyrimidin-4-yl)hydrazone (Exo2) stimulates morphological changes at the mammalian Golgi and trans-Golgi network that are virtually indistinguishable from those induced by brefeldin A. Both brefeldin A and Exo2 protect cells from intoxication by Shiga(-like) toxins by acting on other targets that operate at the early endosome, but do so at the cost of high toxicity to target cells. The advantage of Exo2 is that it is much more amenable to chemical modification and here we report a range of Exo2 analogues produced by modifying the tetrahydrobenzothienopyrimidine core, the vanillin moiety and the hydrazone bond that links these two. These compounds were examined for the morphological changes they stimulated at the Golgi stack, the trans Golgi network and the transferrin receptor-positive early endosomes and this activity correlated with their inherent toxicity towards the protein manufacturing ability of the cell and their protective effect against toxin challenge. We have developed derivatives that can separate organelle morphology, target specificity, innate toxicity and toxin protection. Our results provide unique compounds with low toxicity and enhanced specificity to unpick the complexity of membrane trafficking networks

    The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network

    Get PDF
    The small-molecule inhibitor Exo2 {4-hydroxy-3-methoxy-(5,6,7,8-tetrahydrol[1]benzothieno[2,3-d]pyrimidin-4-yl)hydraz-one benzaldehyde} has been reported to disrupt the Golgi apparatus completely and to stimulate Golgi–ER (endoplasmic reticulum) fusion in mammalian cells, akin to the well-characterized fungal toxin BFA (brefeldin A). It has also been reported that Exo2 does not affect the integrity of the TGN (trans-Golgi network), or the direct retrograde trafficking of the glycolipid-binding cholera toxin from the TGN to the ER lumen. We have examined the effects of BFA and Exo2, and found that both compounds are indistinguishable in their inhibition of anterograde transport and that both reagents significantly disrupt the morphology of the TGN in HeLa and in BS-C-1 cells. However, Exo2, unlike BFA, does not induce tubulation and merging of the TGN and endosomal compartments. Furthermore, and in contrast with its effects on cholera toxin, Exo2 significantly perturbs the delivery of Shiga toxin to the ER. Together, these results suggest that the likely target(s) of Exo2 operate at the level of the TGN, the Golgi and a subset of early endosomes, and thus Exo2 provides a more selective tool than BFA for examining membrane trafficking in mammalian cells

    Restoring Akt1 activity in outgrowth endothelial cells from south asian men rescues vascular reparative potential

    Get PDF
    Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented reendothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.This work was supported by the British Heart Foundation, London, UK, and the Diabetes Research and Wellness Foundation, Portsmouth, UK

    Prognostic value of members of NFAT family for pan-cancer and a prediction model based on NFAT2 in bladder cancer.

    Get PDF
    Bladder cancer (BLCA) is one of the common malignant tumors of the urinary system. The poor prognosis of BLCA patients is due to the lack of early diagnosis and disease recurrence after treatment. Increasing evidence suggests that gene products of the nuclear factor of activated T-cells (NFAT) family are involved in BLCA progression and subsequent interaction(s) with immune surveillance. In this study, we carried out a pan-cancer analysis of the NFAT family and found that NFAT2 is an independent prognostic factor for BLCA. We then screened for differentially expressed genes (DEGs) and further analyzed such candidate gene loci using gene ontology enrichment to curate the KEGG database. We then used Lasso and multivariate Cox regression to identify 4 gene loci (FER1L4, RNF128, EPHB6, and FN1) which were screened together with NFAT2 to construct a prognostic model based on using Kaplan-Meier analysis to predict the overall survival of BLCA patients. Moreover, the accuracy of our proposed model is supported by deposited datasets in the Gene Expression Omnibus (GEO) database. Finally, a nomogram of this prognosis model for BLCA was established which could help to provide better disease management and treatment

    In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis

    Get PDF
    Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis

    Technology-Enabled Remote Monitoring and Self-Management - Vision for Patient Empowerment Following Cardiac and Vascular Surgery: User Testing and Randomized Controlled Trial Protocol.

    Get PDF
    BACKGROUND: Tens of thousands of cardiac and vascular surgeries (CaVS) are performed on seniors in Canada and the United Kingdom each year to improve survival, relieve disease symptoms, and improve health-related quality of life (HRQL). However, chronic postsurgical pain (CPSP), undetected or delayed detection of hemodynamic compromise, complications, and related poor functional status are major problems for substantial numbers of patients during the recovery process. To tackle this problem, we aim to refine and test the effectiveness of an eHealth-enabled service delivery intervention, TecHnology-Enabled remote monitoring and Self-MAnagemenT-VIsion for patient EmpoWerment following Cardiac and VasculaR surgery (THE SMArTVIEW, CoVeRed), which combines remote monitoring, education, and self-management training to optimize recovery outcomes and experience of seniors undergoing CaVS in Canada and the United Kingdom. OBJECTIVE: Our objectives are to (1) refine SMArTVIEW via high-fidelity user testing and (2) examine the effectiveness of SMArTVIEW via a randomized controlled trial (RCT). METHODS: CaVS patients and clinicians will engage in two cycles of focus groups and usability testing at each site; feedback will be elicited about expectations and experience of SMArTVIEW, in context. The data will be used to refine the SMArTVIEW eHealth delivery program. Upon transfer to the surgical ward (ie, post-intensive care unit [ICU]), 256 CaVS patients will be reassessed postoperatively and randomly allocated via an interactive Web randomization system to the intervention group or usual care. The SMArTVIEW intervention will run from surgical ward day 2 until 8 weeks following surgery. Outcome assessments will occur on postoperative day 30; at week 8; and at 3, 6, 9, and 12 months. The primary outcome is worst postop pain intensity upon movement in the previous 24 hours (Brief Pain Inventory-Short Form), averaged across the previous 14 days. Secondary outcomes include a composite of postoperative complications related to hemodynamic compromise-death, myocardial infarction, and nonfatal stroke- all-cause mortality and surgical site infections, functional status (Medical Outcomes Study Short Form-12), depressive symptoms (Geriatric Depression Scale), health service utilization-related costs (health service utilization data from the Institute for Clinical Evaluative Sciences data repository), and patient-level cost of recovery (Ambulatory Home Care Record). A linear mixed model will be used to assess the effects of the intervention on the primary outcome, with an a priori contrast of weekly average worst pain intensity upon movement to evaluate the primary endpoint of pain at 8 weeks postoperation. We will also examine the incremental cost of the intervention compared to usual care using a regression model to estimate the difference in expected health care costs between groups. RESULTS: Study start-up is underway and usability testing is scheduled to begin in the fall of 2016. CONCLUSIONS: Given our experience, dedicated industry partners, and related RCT infrastructure, we are confident we can make a lasting contribution to improving the care of seniors who undergo CaVS

    Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion

    Get PDF
    It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF

    VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions

    Get PDF
    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways
    corecore