327 research outputs found

    Quantitative shape measurements of distal volcanic ash

    Get PDF
    Large-scale volcanic eruptions produce fine ash (\u3c 200 ÎŒm) which has a long atmospheric residence time (1 hour or more) and can be transported great distances from the volcanic source, thus, becoming a hazard to aircraft and public health. Ash particles have irregular shapes, so data on particle shape, size, and terminal velocities are needed to understand how the irregular-shaped particles affect transport processes and radiative transfer measurements. In this study, a methodology was developed to characterize particle shapes, sizes , and terminal velocities for three ash samples of different compositions. The shape and size of 2,500 particles from 1) distal fallout (~100 km) of the October 14, 1974 Fuego eruption (basaltic), 2) the secondary maxima (~250 km) of the August 18, 1992 Spurr eruption (andesitic), and 3) the Miocene Ash Hollow member, Nebraska (rhyolitic) were measured using image analysis techniques. Samples were sorted into 10 to 19 terminal velocity groups (0.6-59.0 cm/s) using an air elutriation device. Grain size distributions for the samples were measured using laser diffraction. Aspect ratio, feret diameter, and perimeter measurements were found to be the most useful descriptors of how particle shape affects terminal velocity. These measurement values show particle shape differs greatly from a sphere (commonly used in models and algorithms). The diameters of ash particles were 10-120% larger than ideal spheres at the same terminal velocity, indicating that irregular particle shape greatly increases drag. Gas-adsorption derived surface areas are 1 to 2 orders of magnitude higher than calculated surface areas based on measured dimensions and simple geometry, indicating that particle shapes are highly irregular. Correction factors for surface area were derived from the ash sample measurements so that surface areas calculated by assuming spherical particle shapes can be corrected to reflect more realistic values

    Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    Get PDF
    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10–12 ÎŒm) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65°N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6–65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud\u27s lateral extent because the satellite zenith angles result in a “side-looking” aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data

    Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors

    Get PDF
    In this study, ultraviolet TOMS (Total Ozone Mapping Spectrometer) satellite data for SO2 are re-evaluated for the first 15 days following the 15 June 1991 Pinatubo eruption to reflect new data retrieval and reduction methods. Infrared satellite SO2 data from the TOVS/HIRS/2 (TIROS (Television Infrared Observation Satellite) Optical Vertical Sounder/High Resolution Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed for the first time for Pinatubo. Extrapolation of SO2 masses calculated from TOMS and TOVS satellite measurements 19–118 hours after the eruption suggest initial SO2 releases of 15 ± 3 Mt for TOMS and 19 ± 4 Mt for TOVS, including SO2 sequestered by ice in the early Pinatubo cloud. TOVS estimates are higher in part because of the effects of early formed sulfate. The TOMS SO2 method is not sensitive to sulfate, but can be corrected for the existence of this additional emitted sulfur. The mass of early formed sulfate in the Pinatubo cloud can be estimated with infrared remote sensing at about 4 Mt, equivalent to 3 Mt SO2. Thus the total S release by Pinatubo, calculated as SO2, is 18 ± 4 Mt based on TOMS and 19 ± 4 Mt based on TOVS. The SO2removal from the volcanic cloud during 19–374 hours of atmospheric residence describes overall e-folding times of 25 ± 5 days for TOMS and 23 ± 5 days for TOVS. These removal rates are faster in the first 118 hours after eruption when ice and ash catalyze the reaction, and then slow after heavy ash and ice fallout. SO2 mass increases in the volcanic cloud are observed by both TOMS and TOVS during the first 70 hours after eruption, most probably caused by the gas-phase SO2release from sublimating stratospheric ice-ash-gas mixtures. This result suggests that ice-sequestered SO2 exists in all tropical volcanic clouds, and at least partially explains SO2 mass increases observed in other volcanic clouds in the first day or two after eruption

    Observations of volcanic clouds in their first few days of atmospheric residence: The 1992 eruptions of crater peak, Mount Spurr volcano, Alaska

    Get PDF
    Satellite SO2 and ash measurements of Mount Spurr’s three 1992 volcanic clouds are compared with ground‐based observations to develop an understanding of the physical and chemical evolution of volcanic clouds. Each of the three eruptions with ratings of volcanic explosivity index three reached the lower stratosphere (14 km asl), but the clouds were mainly dispersed at the tropopause by moderate to strong (20–40 m/s) tropospheric winds. Three stages of cloud evolution were identified. First, heavy fallout of large (\u3e500 ÎŒm) pyroclasts occurred close to the volcano (vent) during and immediately after the eruptions, and the cloud resembled an advected gravity current. Second, a much larger, highly elongated region marked by a secondary‐mass maximum occurred 150–350 km downwind in at least two of the three events. This was the result of aggregate fallout of a bimodal size distribution including fine (\u3c25 \u3eÎŒm) ash that quickly depleted the solid fraction of the volcanic cloud. For the first several hundred kilometers, the cloud spread laterally, first as an intrusive gravity current and then by wind shear and diffusion as downwind cloud transport occurred at the windspeed (during the first 18–24 h). Finally, the clouds continued to move through the upper troposphere but began decreasing in areal extent, eventually disappearing as ash and SO2 were removed by meteorological processes. Total SO2 in each eruption cloud increased by the second day of atmospheric residence, possibly because of oxidation of coerupted H2S or possibly because of the effects of sequestration by ice followed by subsequent SO2 release during fallout and desiccation of ashy hydrometeors. SO2 and volcanic ash travelled together in all the Spurr volcanic clouds. The initial (18–24 h) area expansion of the clouds and the subsequent several days of drifting were successfully mapped by both SO2 (ultraviolet) and ash (infrared) satellite imagery

    Surface temperature and spectral measurements at Santiaguito lava dome, Guatemala

    Get PDF
    An infrared thermometer, spectroradiometer and digital video camera were used to observe and document short-term evolution of surface brightness temperature and morphology at Santiaguito lava dome, Guatemala. The thermometer dataset shows 40–70 minute-long cooling cycles, each defined by a cooling curve that is both initiated and terminated by rapid increases in temperature due to regular ash venting. The average cooling rate calculated for each cycle range from 0.9 to 1.6°C/min. We applied a two-component thermal mixture model to the spectroradiometer (0.4–2.5 ÎŒm) dataset. The results suggest that the observed surface morphology changed from a cool (120–250°C) crust-dominated surface with high temperature fractures (\u3e900°C) in the first segment of the measurement period to an isothermal surface at moderately high temperature (350–500°C) during the second segment. We attribute the change in the thermal state of the surface to the physical rearrangement of the dome\u27s surface during the most energetic of the ash eruptions

    Explosive Dome Eruptions Modulated by Periodic Gas-Driven Inflation

    Get PDF
    Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice\u27s conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Gas Dynamic Virtual Nozzle for Generation of Microscopic Droplet Streams

    Full text link
    As shown by Ganan-Calvo and co-workers, a free liquid jet can be compressed in iameter through gas-dynamic forces exerted by a co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single file droplet streams are generated by triggering the device with a piezoelectric actuator. The device is essentially immune to clogging
    • 

    corecore