123 research outputs found

    Intermolecular Structure Determination of Amyloid Fibrils with 2 Magic-Angle Spinning and Dynamic Nuclear Polarization NMR

    Get PDF
    We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range [superscript 13]C–[superscript 13]C correlation spectra and the third based on the identification of intermolecular interactions in [superscript 13]C–[superscript 15]N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3 or PI3K-SH3), that efficient [superscript 13]C–[superscript 13]C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The [superscript 13]C–[superscript 13]C experiments are corroborated by [superscript 15]N–[superscript 13]C correlation spectra obtained from a mixed [[superscript 15]N,[superscript 12]C]/[[superscript 14]N,[superscript 13]C] sample which directly quantify interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular [superscript 15]N–[superscript 13]C constraints detectable in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total, the experiments provide 111 intermolecular [superscript 13]C–[superscript 13]C and [superscript 15]N–[superscript 13]C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.National Institutes of Health (U.S.) (Grant EB-003151)National Institutes of Health (U.S.) (Grant EB-002804)National Institutes of Health (U.S.) (Grant EB-002026

    A Novel L-Asparaginase from Enterobacter sp. Strain M55 from Maras Salterns in Peru

    Get PDF
    L-Asparaginase (ASNase) is used in medicine for neoplasms treatment and in food industry for mitigation of acrylamide in high-temperature processed food. In medicine, commercial ASNases have exhibited side effects and l-glutaminase (GLNase) activity affecting the clinical treatment. The aim of this work was to study a novel ASNase from Enterobacter sp. M55 isolated from Maras Salters in Peru, which was purified and biochemically characterised. This ASNase exhibited a Km of 5.71 mM and a Vmax of 0.16 µmol mL–1 min–1, as well as an optimum temperature and pH of 37 °C and 6, respectively. Moreover, a good activity (80 %) was observed at physiological pH. Likewise, the enzyme increased its activity by around 50% in presence of urea, glutathione, and glucose. Whilst in presence of serum compounds, it kept more that 60 % of activity. In addition, this ASNase showed low GLNase activity

    Line geometry and camera autocalibration

    Get PDF
    We provide a completely new rigorous matrix formulation of the absolute quadratic complex (AQC), given by the set of lines intersecting the absolute conic. The new results include closed-form expressions for the camera intrinsic parameters in terms of the AQC, an algorithm to obtain the dual absolute quadric from the AQC using straightforward matrix operations, and an equally direct computation of a Euclidean-upgrading homography from the AQC. We also completely characterize the 6×6 matrices acting on lines which are induced by a spatial homography. Several algorithmic possibilities arising from the AQC are systematically explored and analyzed in terms of efficiency and computational cost. Experiments include 3D reconstruction from real images

    Monte Carlo Simulations of HIV Capsid Protein Homodimer

    Get PDF
    Capsid protein (CA) is the building block of virus coats. To help understand how the HIV CA proteins self-organize into large assemblies of various shapes, we aim to computationally evaluate the binding affinity and interfaces in a CA homodimer. We model the N- and C-terminal domains (NTD and CTD) of the CA as rigid bodies and treat the five-residue loop between the two domains as a flexible linker. We adopt a transferrable residue-level coarse-grained energy function to describe the interactions between the protein domains. In seven extensive Monte Carlo simulations with different volumes, a large number of binding/unbinding transitions between the two CA proteins are observed, thus allowing a reliable estimation of the equilibrium probabilities for the dimeric vs monomeric forms. The obtained dissociation constant for the CA homodimer from our simulations, 20–25 μM, is in reasonable agreement with experimental measurement. A wide range of binding interfaces, primarily between the NTDs, are identified in the simulations. Although some observed bound structures here closely resemble the major binding interfaces in the capsid assembly, they are statistically insignificant in our simulation trajectories. Our results suggest that although the general purpose energy functions adopted here could reasonably reproduce the overall binding affinity for the CA homodimer, further adjustment would be needed to accurately represent the relative strength of individual binding interfaces

    Towards a Pharmacophore for Amyloid

    Get PDF
    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases

    Electrostatic Effects in the Folding of the SH3 Domain of the c-Src Tyrosine Kinase: pH-Dependence in 3D-Domain Swapping and Amyloid Formation

    Get PDF
    The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.This research was funded by the Spanish Ministry of Science and Innovation and Ministry of Economy and Competitiveness and FEDER (EU): BIO2009-13261-C02-01/02 (ACA); BIO2012-39922-C02-01/02 (ACA); CTQ2013-4493 (JLN) and CSD2008-00005 (JLN); Andalusian Regional Government (Spain) and FEDER (EU): P09-CVI-5063 (ACA); and Valentian Regional Government (Spain) and FEDER (EU): Prometeo 2013/018 (JLN). Data collection was supported by European Synchrotron Radiation Facility (ESRF), Grenoble, France: BAG proposals MX-1406 (ACA) and MX-1541 (ACA); and ALBA (Barcelona, Spain) proposals 2012010072 (ACA) and 2012100378 (ACA)

    Exploring Chromophore-Binding Pocket: High-Resolution Solid-State 1H–13C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme

    Get PDF
    High-resolution two-dimensional (2D) 1H–13C heteronuclear correlation spectra are recorded for selective observation of interfacial 3–5.5 Å contacts of the uniformly 13C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI–HETCOR) method. For improving 1H spectral resolution, a windowed phase-modulated Lee–Goldburg (wPMLG) decoupling scheme is applied during the t1 evolution period. Our approach allows for identification of chromophore–protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1–514, Cph1Δ2) containing uniformly 13C- and 15N-labeled PCB chromophore (u-[13C,15N]-PCB-Cph1Δ2) at 17.6 T

    Sustainability of biohydrogen as fuel: Present scenario and future perspective

    Get PDF
    corecore