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Abstract We provide a completely new rigorous ma-

trix formulation of the absolute quadratic complex (AQC),

given by the set of lines intersecting the absolute conic.
The new results include closed-form expressions for the

camera intrinsic parameters in terms of the AQC, an

algorithm to obtain the dual absolute quadric from the
AQC using straightforward matrix operations, and an

equally direct computation of a Euclidean-upgrading

homography from the AQC. We also completely char-

acterize the 6 × 6 matrices acting on lines which are
induced by a spatial homography.

Several algorithmic possibilities arising from the AQC

are systematically explored and analyzed in terms of
efficiency and computational cost. Experiments include

3D reconstruction from real images.

Keywords Camera autocalibration · Varying param-

eters · Absolute quadratic complex

1 Introduction

The problem of obtaining a 3D reconstruction from a

set of images is a central issue in modern computer vi-

sion [10,11,16]. An important practical situation is that

in which no a priori knowledge of the scene and camera
positions is available and the data about the camera

internal parameters is reduced to a minimum. This is

called the autocalibration problem. If nothing is known
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about the internal parameters of the cameras then only

a projective reconstruction is possible, i.e., one that dif-

fers from the actual scene in a 3D homography [7,12].

Two kinds of restrictions in the camera internal pa-

rameters leading to Euclidean reconstructions have been

mainly considered in the literature. The first one is that

of cameras with constant internal parameters [17]. To
solve the autocalibration problem in this case, the main

geometrical object used was the absolute conic [25],

which is an imaginary conic on the plane at infinity en-
coding the Euclidean structure of 3D space. To obtain

the image of the absolute conic (IAC) Kruppa equations

were employed.

An alternative to Kruppa equations is the unimod-
ular constraint [18], expressing the fact that the inter-

image homographies induced by the plane at infinity

are conjugated to rotation matrices. This allows for the
obtainment of the plane at infinity as an intermediate

step called affine calibration. The resulting approach is

termed stratified calibration.

Another geometrical object equivalent to the abso-
lute conic is the dual absolute quadric (DAQ) [29], given

by the set of planes tangent to the absolute conic. With

respect to the absolute conic the DAQ has the advan-
tage of being given by a single equation, being particu-

larly useful to profit from the knowledge of orthogonal

plane pairs.

The second kind of restriction is used in the case of
cameras with variable parameters, consisting in restric-

tions of some camera parameters as the pixel shape. For

example, in [1] the inter-image homography is consid-

ered for the autocalibration of purely rotating cameras
with varying parameters. This homography relates the

images taken with two cameras with the same projec-

tion center and thus the associated IAC’s. Linear and
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non-linear algorithms are provided for the case of cam-

eras with rectangular or square pixels.

Another instance in which the 3D reconstruction is

obtained in a particularly simple way is that in which

the principal point positions are known along with the
fact that the camera has square pixels. In fact, using

the DAQ, this results in a set of linear equations [19,

26]. Another alternative for this problem is proposed
in [27], consisting in an iterative algorithm to improve

an initial guess on the principal point position.

The characterization given in [8, p. 53] and [13] of
square pixel cameras has been used in [5] and [14] to

calibrate cameras with varying parameters through the

minimization of a cost function in terms of the projec-
tion matrices. The initialization of the algorithms were

based either on a priori approximate knowledge of the

internal parameters or on the assumption of constant

internal parameters so that Kruppa equations can be
used. In [19] the same problem is adressed through the

optimization of a cost function depending on the DAQ

and the intrinsic camera parameters. Critical motions
for autocalibration of cameras with fixed aspect ratio

and skew but with other parameters varying are studied

in [15].

All the aforementioned algorithms for autocalibra-

tion of cameras with varying parameters under general

motion share the limitation of needing an accurate ini-
tialization with an approximate solution.

The above-mentioned characterization of projection

matrices for cameras with rectangular pixels was also
the starting point in [20] to obtain the matrix estab-

lishing the orthogonality of lines in Plücker coordinates.

This matrix was introduced as a geometric object on its

own in [21], calling it the Absolute Quadratic Complex

(AQC).

The AQC is given by the set of lines that intersect

the absolute conic [20,21,30–32], sharing with the DAQ
the advantage over the absolute conic of being given

by a single equation. An advance of some results pre-

sented in this paper appeared in conference paper [24].
The AQC is particularly well-suited for autocalibration

when pairs of orthogonal lines are known and also in the

case of square-pixel cameras, because then each camera
provides two lines intersecting the absolute conic, lead-

ing to linear equations in the AQC parameters. This

solves, when enough cameras are available, the initial-

ization problem of previous techniques.

Handling the set of lines in 3D space is of interest

not only in relation with the AQC but also in other com-

puter vision problems, such as 3D reconstruction based
on line correspondences [2]. In this work Plücker coor-

dinates were employed, but other possible techniques

to deal with lines in 3D space are the double-algebra

theory as described, e.g., in [6,9], Clifford Algebras [3]

or exterior algebra, which is used, e.g., in [32]. The ad-
vantage of the Plücker matrix approach of this paper

is that it is very close to the implementation of the

algorithms.
One of our aims is to provide a completely new rig-

orous matrix formulation of the AQC. An effort has

been made to make the paper self-contained. With this
purpose we include an introduction to Plücker theory,

covering several aspects which are not easily available

in the literature but are necessary for the AQC theory.

New properties of the AQC are also presented and
exploited to obtain novel autocalibration algorithms.

The new results include closed-form expressions for the

camera intrinsic parameters in terms of the AQC (Sect.
3.8), an algorithm to obtain the DAQ from the AQC us-

ing straightforward matrix operations (Sect. 3.9), and

an equally direct computation of a Euclidean-upgrading
homography (Sect. 3.10) from the AQC, formalizing a

technique proposed in [20]. We also completely charac-

terize the 6 × 6 matrices acting on lines which are in-

duced by a spatial homography (equations (27)), com-
pleting a previous result given in [2]. A mathematical

proof of the fact that the operation attaching to each

spatial homography its line homography is invariant un-
der transposition is given as well.

In the algorithmic part of this work, several possibil-

ities arising from the AQC are systematically explored
and analyzed in terms of efficiency and computational

cost. The potential of the AQC to provide accurate

initializations is exploited. Experiments include testing

with three different sets of real data and comparison
with other algorithms.

The paper is organized as follows. Section 2 intro-

duces the required tools in order to deal with geometry
of lines in space. Then Sect. 3 introduces the AQC in

a new way that makes explicit its relationship with the

DAQ. Section 4 addresses the relevance of the AQC in
the case of cameras with known pixel shape. The new

autocalibration techniques that arise from this work are

presented and tested with synthetic and real data in

Sect. 5. Conclusions are provided in Sect. 6. Proofs of
some of the mathematical results of the paper are post-

poned to the Appendix.

2 Line representation

Plücker coordinates [22,25] are a very convenient math-

ematical representation of lines in 3D space. The core

of Plücker theory is the existence of two natural one-to-
one correspondences between lines of space and the set

of rank-two 4 × 4 antisymmetric matrices. In this sec-

tion we summarize the notation and results of Plücker
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theory that will be relevant in the rest of the paper. Our

presentation covers many aspects which are not avail-
able in the literature and are necessary for the AQC

theory. Proofs are postponed to the Appendix.

2.1 Plücker matrices

Given two vectors u = (u1, u2, u3, u4)
⊤, v = (v1, v2, v3,

v4)
⊤ ∈ C

4, we define the antisymmetric matrix

M(u,v) = uv⊤ − vu⊤ =




0 m12 m13 m14

−m12 0 m23 m24

−m13 −m23 0 m34

−m14 −m24 −m34 0


 ,

mij = uivj − ujvi. (1)

Note that M(u,v) = 0 if and only if u and v are

dependent, and otherwise the rank of M(u,v) is two.
The L-matrix of a line l is given by

L = M(p,q). (2)

where p and q are any two points of l. Changing the
points leads to a proportional matrix, so that L-matrices

are defined up to a non-zero scale.

2.1.1 Basic relations

The planes α containing the line are those satisfying

Lα = 0. (3)

Therefore each line is determined by its L-matrix.

Since L-matrices are singular, they satisfy

det L = (m12m34 +m13m42 +m14m23)
2 = 0. (4)

Conversely, since singular antisymmetric matrices are

defined up to a constant factor by their kernel (re-

marks A1 and A2 in Sect. A.1), any singular 4×4 non-
zero antisymmetric matrix turns out to be the L-matrix

of some line.

The intersection of the line l and the plane α is
given by

X = Lα. (5)

Along with the L-matrix, we can also assign a line its
L∗-matrix, given by

L∗ = M(α,β), (6)

where α and β are two planes defining the line. The
properties of this matrix are dual versions of those of

L-matrices. In particular, L∗-matrices characterize the

set of points of the line by the relation L∗X = 0, and the

plane γ defined by the line and an external point X is

obtained as γ = L∗X. The L-matrix and the L∗-matrix
of a line will be called its Plücker matrices. Next, we

will show the relationship between them.

Given two vectors u,v ∈ C
4, define the matrix M∗(u,v)

as the only one satisfying

x⊤M∗(u,v)y = det(x,u,v,y), (7)

for any vectors x, y. Its explicit expression is

M∗(u,v) =




0 m34 m42 m23

−m34 0 m14 m31

−m42 −m14 0 m12

−m23 −m31 −m12 0


 (8)

with mij defined as in (1). Therefore M∗(u,v) can be

obtained from M(u,v) by certain transpositions of co-

efficients, so that M∗∗ = M. Given the points p, q, the

kernel of the matrix M∗(p,q) is, as a consequence of (7),
the set of points of the line through them. Therefore,

M∗(p,q) coincides with the L∗-matrix of the line. Du-

ally, if α and β are two planes, M∗(α,β) is a L-matrix
of the line defined by them. Hence, M∗(α,β) ∼ M(p,q).

2.1.2 Incidence of lines.

Incidence between lines is easily established in terms of

Plücker matrices (see Sect. A.2). Two lines l1 and l2,
with matrices L1 and L∗2 respectively, intersect if and

only if

trace(L1L
∗
2) = 0. (9)

If the two lines intersect, any non-zero column of the

product L1L
∗
2 represents the intersection point. Analo-

gously, any non-zero row of the product L1L
∗
2 represents

the common plane. Finally, since a line intersects itself,

for any L-matrix,

trace(LL∗) = 0, (10)

but this condition is just (4).

Three lines are concurrent when the intersection of
two of them lies on the third one or, equivalently, when

L∗1L2L
∗
3 = 0. Dually, the coplanarity of three lines is

characterized by equation L1L
∗
2L3 = 0. Table 1 summa-

rizes previous formulas.

2.1.3 Changes of coordinates

Consider the change of coordinates (or the linear map-

ping) in P
3 given by p′ = Hp. If the line l is defined by

points p,q, its associated L-matrix will be given in the

new coordinate system by

M(p′,q′) = H M(p,q) H⊤. (11)
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Table 1 Operations with points, planes and lines using Plücker matrices.

Line defined by L = M(p,q) Line defined by L = M∗(α,β)

two points two planes

Point on the line L∗X = 0 Plane containing the line Lπ = 0

Plane defined by point and line π = L∗X Point defined by plane and line X = Lπ

Plane defined by π = row(L1L
∗
2) Point defined by X = col(L1L

∗
2)

two coplanar lines = col(L∗1L2) two coplanar lines = row(L∗1L2)

Plane through three points π = M∗(p,q)r Point through three planes X = M∗(α,β)γ

Three lines are coplanar L1L
∗
2L3 = 0 Three lines are concurrent L∗1L2L

∗
3 = 0

Analogously, the corresponding change of coordinates

for planes α′ = H−⊤α induces the transformation for-

mula for L∗-matrices M(α′,β′) = H−⊤M(α,β)H−1. But
since M∗(p,q) ∼ M(α,β) and M∗(p′,q′) ∼ M(α′,β′), we

obtain

M∗(Hp, Hq) = ρ1 M(H
−⊤α, H−⊤β) = ρ1 H

−⊤M(α,β)H−1

= ρ1ρ2 H
−⊤M∗(p,q)H−1 (12)

for some scalars ρ1, ρ2. The proportionality constant

ρ = ρ1ρ2 can be obtained as follows. From (7) we have

(Hx)⊤M∗(Hp, Hq)(Hy) = det(Hx, Hp, Hq, Hy)

= det(H) det(x,p,q,y).

And, from (12), the left-hand side of this last equation is

(Hx)⊤(ρH−⊤M∗(p,q)H−1)(Hy) = ρx⊤M∗(p,q)y

= ρdet(x,p,q,y),

so that ρ = det(H), i.e.,

M∗(Hp, Hq) = det(H) H−⊤M∗(p,q)H−1. (13)

2.2 Plücker coordinates

A convenient choice of basis of the set of 4×4 antisym-

metric matrices is

B = {M(e3, e4), M(e1, e4), M(e2, e4), M(e3, e1),
M(e2, e3), M(e1, e2)}

= {M∗(e1, e2), M∗(e2, e3), M∗(e3, e1), M∗(e2, e4),
M∗(e1, e4), M

∗(e3, e4)},

(14)

so that an antisymmetric matrix A = (aij) will have

coordinates with respect to B

ℓA = (a34, a14, a24, a31, a23, a12)
⊤. (15)

Note that given antisymmetric matrices A, B, we have

1
2 trace(A

⊤B) = ℓ⊤A ℓB. (16)

The mapping M 7→ M∗ given in (8) corresponds to

ℓA∗ = Ω ℓA, ℓA = Ω ℓA∗ , where Ω =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


 .

(17)

This accounts for the ordering of the elements of the

basis B.
We define the Plücker coordinates of a line as the

coordinates of its L-matrix with respect to B, so if a line

l is given by points p, q or by planes α, β, its Plücker
coordinates ℓ are

ℓ ∼ ℓM(p,q) ∼ ℓM∗(α,β). (18)

Relations (16) and (17) allow for an easy translation

of previous formulas involving Plücker matrices to the

language of Plücker coordinates. In particular, accord-
ing to (10), a non-zero vector ℓ ∈ C

6 will correspond to

the Plücker coordinates of some line if and only if

ℓ⊤Ω ℓ = 0. (19)

The quadric with matrixΩ is known as theKlein quadric.

The incidence relation (9) in terms of Plücker coor-

dinates is given by

1
2 trace (L

⊤
1 L

∗
2) = ℓ⊤L1Ω ℓL2 = 0, (20)

due to (16) and (17). Therefore, two lines intersect if

and only if their Plücker coordinates are conjugate with
respect to the Klein quadric.

Given vectors u, v of C4, we define

u ∧ v= ℓM(u,v)=
(
m34 m14 m24 m31 m23 m12

)⊤
,

u ∧
∗
v= ℓM∗(u,v)=

(
m12 m23 m31 m24 m14 m34

)⊤
,
(21)

where mij = uivj − ujvi. It is immediate that these

operations are antisymmetric and bilinear. Thus, if α,β

represent planes defining the line l through the points
p,q, then p ∧ q ∼ α ∧

∗
β are the Plücker coordinates

of l.
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From (17) and (21) it follows that

Ω (u ∧ v) = u ∧
∗
v, Ω (u ∧

∗
v) = u ∧ v, (22)

so that

Ω2 = I. (23)

2.2.1 Changes of coordinates

Changes of coordinates of P3 affect Plücker coordinates

according to a relationship deriving from (11). The change

of coordinates of P3 given by p′ = Hp, and therefore
α′ = H−⊤α, induces the change of Plücker coordinates

ℓM(p′,q′) = H̃ ℓM(p,q),

ℓM∗(α′,β′) = det(H−1)H̃ ℓM∗(α,β),
(24)

where, being hi the columns of H for i = 1, . . . , 4,

H̃ =
(
h3 ∧ h4 h1 ∧ h4 h2 ∧ h4 h3 ∧ h1

h2 ∧ h3 h1 ∧ h2

) (25)

(these formulas and the following ones are proved in

Sect. A.3). The matrices of this form have the property

H̃⊤ΩH̃ = det(H)Ω. (26)

In fact, a necessary and sufficient condition for a

6× 6 matrix A = (a1, . . . ,a6) to be of the form A = H̃ is
that

A⊤ΩA ∼ Ω

L∗1L2L
∗
3 = 0,

(27)

where the Li are the Plücker matrices defined by the
condition ℓLi = ai (see Sect. A.3, cf. [2]). Formula (26)

holds true also for singular matrices.

It is known that duality switches points and planes

in 3D-space. The self-duality of lines is nicely encoded

in the next formula, which is also proved in the Ap-
pendix (cf. [2]):

H̃⊤ = H̃⊤. (28)

Another useful formula, that is immediate from the def-

inition of H̃, is

H̃−1 = H̃−1. (29)

2.2.2 Plücker coordinates and projections

Plücker coordinates allow us to express in a practical
way two projection relationships involving lines (see

Sect. A.5). The projection of a spatial line ℓ through a

camera given by a projection matrix P = (π1,π2,π3)
⊤ is

r = PΩℓ where P = (π2 ∧∗ π3 π3 ∧∗ π1 π1 ∧∗ π2)
⊤.

(30)

The back-projected line of a point x in the image plane
has Plücker coordinates

ℓ = P⊤x, (31)

cf. [9, p. 194], [21].

3 The absolute quadratic complex

3.1 Introducing the absolute quadratic complex

Recall that the dual absolute quadric (DAQ) Q∗∞ is a
positive-semidefinite rank-three 4×4 symmetric matrix

that can be seen as a mapping that assigns to each plane

α the point at infinity X = Q∗∞α, corresponding to its

orthogonal vector [29]. Let us consider a line l given by
the planes α and β, and not contained in the plane at

infinity, π∞. The line l⊥ of π∞ joining points Q∗∞α and

Q∗∞β is the set of orthogonal directions to l. Therefore,
the L-matrix of l⊥ is

L⊥ = M(Q∗∞α, Q∗∞β) = Q∗∞(αβ⊤ − βα⊤)Q∗∞

= Q∗∞L∗Q∗∞. (32)

where L∗ = M(α,β) is the L∗-matrix of l. Note that if l

is contained in π∞ then we can take α = π∞ and since

Q∗∞π∞ = 0 it results L⊥ = 0, which is consistent with
the fact that the orthogonal line is not defined for lines

at infinity, which in turn define an orthogonal point.

Two coplanar lines not in π∞, l and l′, are orthog-

onal if and only if l⊥ intersects l′, i.e., using (9), if

trace (L∗′ L⊥) = trace (L∗′ Q∗∞L∗Q∗∞) = 0. (33)

The line l⊥ being the polar line with respect to the ab-

solute conic of the point at infinity p∞ of l, we have
that the lines not in π∞ that intersect the absolute

conic are exactly those that intersect their own orthog-

onal line (see Fig. 1). We will call such lines isotropic

lines. Therefore isotropic lines are characterized by the

equation

trace (L∗Q∗∞L∗Q∗∞) = trace
[
(L∗Q∗∞)2

]
= 0. (34)
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l1

l2
l
⊥

1

l
⊥

2

π∞

Fig. 1 Incidence of lines with the absolute conic.

This is a quadratic expression in the coordinates of

L∗ which will be called the absolute quadratic complex

(AQC).

The AQC allows to express the Euclidean structure

of space in an alternative way to the DAQ. In the same
way as the DAQ is given by the tangent planes to the

absolute conic, the AQC is given by the set of lines that

intersect it.

3.2 The AQC in terms of Plücker coordinates

Note that (33) is a bilinear symmetric expression in L∗

and L∗′. Hence, some 6× 6 symmetric matrix Σ exists

so that

1
2 trace ((L

∗′)⊤Q∗∞L∗Q∗∞) = ℓ⊤L′ΣℓL. (35)

Therefore, two coplanar lines l and l′, are orthogonal if

and only if

ℓ′⊤Σℓ = 0. (36)

Likewise, from (34) and (35) l intersects the absolute

conic if and only if

ℓ⊤Σℓ = 0. (37)

Notice that

l′ ⊥ l ⇔
ℓ′⊤Σℓ = 0 ⇔ (since Ω2 = I)

ℓ′⊤Ω(ΩΣℓ) = 0.

(38)

Last equation is equivalent to ℓ⊤Ωℓ⊥ = 0 for any l′

and therefore ΩΣℓ = ℓ⊥. In particular, applying ΩΣ

to the canonical basis of C6 (which are indeed Plücker

coordinates of lines) we conclude that the columns of

ΩΣ are also Plücker coordinates of lines that span the
lines contained in π∞. Then, the columns of ΩΣ satisfy

relation (19) or, equivalently, Σ satisfies

ΣΩΣ = 0. (39)

Besides, we see that Σ is a rank-three matrix, since the

lines of a plane constitute a linear subspace of C6 of
dimension three. Furthermore, the kernel of Σ consists

of the set of lines contained in the plane at infinity. To

see this, observe from (39) that ΣΩΣℓ = 0 for any ℓ.
Since ΩΣℓ can be any line at π∞, the result follows.

Table 2 summarizes some of the main formulas pre-

sented above.

3.3 Obtaining the AQC from the DAQ

To obtain an explicit expression for Σ in terms of the

dual absolute quadric Q∗∞ we apply (16) and (17) to the
left-hand side of (35),

1
2 trace ((L

∗′)⊤Q∗∞L∗Q∗∞) = ℓ⊤L∗′ℓQ∗∞L∗Q∗
∞

= ℓ⊤L′ΩℓQ∗
∞
L∗Q∗

∞
.

(40)

Comparing the right-hand sides of (35) and (40), we

obtain that

ΣℓL = ΩℓQ∗
∞
L∗Q∗

∞
. (41)

By making ℓL take the values of the canonical basis we
can obtain explicit expressions for the columns of Σ.

Thus, let Q∗∞ = (q1,q2,q3,q4) and, according to (14),

substitute L∗ = M(e1, e2) in the last equation to obtain
the first column of Σ,

ΩℓQ∗
∞
M(e1,e2)Q∗∞

(11)
= ΩℓM(q1,q2)

(21)
= Ω(q1 ∧ q2)

(22)
= q1 ∧∗ q2.

(42)

Proceeding analogously with the other columns, we con-

clude that the matrix Σ is

Σ=
(
q1∧∗ q2 q2∧∗ q3 q3∧∗ q1 q2∧∗ q4 q1∧∗ q4 q3∧∗ q4

)

(43)

or, defining Q̃∗∞ as in (25) and using (22),

Σ = ΩQ̃∗∞Ω, (44)

where we have used that right-multiplication by Ω in-
verts the order of the columns.

3.4 The AQC in a Euclidean coordinate system

Substituting the canonical form (Q∗∞)euc = (e1, e2, e3,0)
in (43), we obtain Σ = Σeuc in homogeneous Euclidean

coordinates (X,Y, Z, T )⊤, where

Σeuc =

(
I3×3 03×3

03×3 03×3

)
. (45)
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Table 2 Line representation, incidence and orthogonality in terms of Plücker matrices and coordinates.

Plücker matrices Plücker coordinates

Line obtained by L ∼ M(X1,X2) ℓ ∼ X1 ∧X2

join of two points L∗ ∼ M∗(X1,X2) ℓ ∼ Ω(X1 ∧∗ X2)

Line obtained by L ∼ M∗(π1,π2) ℓ ∼ π1 ∧∗ π2

meet of two planes L∗ ∼ M(π1,π2) ℓ ∼ Ω(π1 ∧ π2)

Valid line trace (LL∗) = 0 = trace (L∗L) ℓ⊤Ωℓ = 0

Coplanar lines trace (L L∗′) = 0 = trace (L∗ L′) ℓ⊤Ωℓ′ = 0

Change of coordinates L′ ∼ HLH⊤ ℓ′ = H̃ℓ

X′ = HX, π′ = H−⊤π L∗′ ∼ H−⊤L∗H−1

Orthogonal lines trace (L∗′ Q∗∞L∗Q∗∞) = 0 ℓ⊤Σℓ′ = 0

Isotropic lines trace
[
(L∗Q∗∞)2

]
= 0 ℓ⊤Σℓ = 0

Conversely, if Σ ∼ Σeuc the coordinates must be

Euclidean. In fact, the plane at infinity has equation
T = 0 since this is the plane in which the columns of

ΩΣ lie. Now we can obtain the equation of the abso-

lute conic by imposing that the line through the point
p = (0, 0, 0, 1)⊤ and a point q = (X,Y, Z, 0)⊤ belongs

to the AQC. According to (21) this line has Plücker

coordinates ℓ = ℓM(p,q) = (−Z,−X,−Y, 0, 0, 0), so that

the condition is

ℓ⊤Σeuc ℓ = X2 + Y 2 + Z2 = 0. (46)

Therefore, the absolute conic has the canonical equa-
tions X2 + Y 2 + Z2 = T = 0 and thus the coordinate

system is Euclidean.

3.5 Changes of coordinates and the AQC

Let p = Hp′ be a coordinate change in P
3 and ℓ = H̃ℓ′

the corresponding coordinate change between Plücker

coordinates (25). The AQC being a quadric, its matrix
changes according to the rule

Σ′ = H̃⊤ΣH̃. (47)

From this, (25), (28), and (45) it follows that if p are

Euclidean coordinates, the AQC in the non-Euclidean

coordinate system can be written in terms of the rows

vi of H as

Σ′ =
(
v3 ∧ v4 v1 ∧ v4 v2 ∧ v4

)

·
(
v3 ∧ v4 v1 ∧ v4 v2 ∧ v4

)⊤
. (48)

Alternatively, using

H̃ = det(H) ΩH̃−⊤Ω,

that derives from (26) and (29), we can write Σ′ in

terms of the columns ui of H
−1 as

Σ′ =
(
u1 ∧∗ u2 u2 ∧∗ u3 u3 ∧∗ u1

)

·
(
u1 ∧∗ u2 u2 ∧∗ u3 u3 ∧∗ u1

)⊤
. (49)

It is in this form that the matrix Σ was introduced
in [20, Lemma 3], where it was interpreted as the matrix

establishing orthogonality between lines.

3.6 A linear constraint on the AQC

The coefficients of the AQC satisfy the linear constraint
given by trace(ΩΣ) = 0:

trace(ΩΣ)
(45,47)
= trace(ΩH̃⊤ΣeucH̃)

= trace(H̃ΩH̃⊤Σeuc)

(28)
= trace(H̃⊤

⊤
ΩH̃⊤Σeuc)

(26)
= trace(det(H⊤)ΩΣeuc) = 0.

Thus the AQC matrices are contained in a hyperplane
of the vector space of the 6× 6 symmetric matrices.

3.7 Angle between two lines

The angle θ ∈ [0, π/2] between two real lines ℓ and ℓ′ is

defined as min(φ, π − φ) where φ is the angle between

any two direction vectors of the lines. Using Plücker
coordinates, it can be computed in terms of Σ as

cos θ =
|ℓ⊤Σ ℓ′|√

(ℓ⊤Σ ℓ)(ℓ′⊤Σ ℓ′)
. (50)
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It is enough to prove this formula for a Euclidean co-

ordinate system. Any vector representative of the point
of intersection of the line ℓ with the plane at infinity

T = 0 is a direction vector of ℓ. We obtain from (5)

and (15) that this point of intersection is




0 l6 −l4 l2
−l6 0 l5 l3
l4 −l5 0 l1
−l2 −l3 −l1 0







0

0
0

1


 =




l2
l3
l1
0


 ,

so that the formula for the angle between two lines

given their direction vectors d = (l2, l3, l1)
⊤ and d′ =

(l′2, l
′
3, l

′
1)

⊤ becomes (cf. [20])

cos θ =
|d⊤d′|√

(d⊤d)(d′⊤d′)
=

|ℓ⊤Σeuc ℓ
′|√

(ℓ⊤Σeuc ℓ)(ℓ
′⊤Σeuc ℓ

′)
.

3.8 Computing the camera intrinsic parameters from Σ

The intrinsic parameter matrix K of a linear projective

camera in a Euclidean coordinate system, P = K(R| −
Rt), is given by

K =



αu −αu cot θ u0

0 αv/ sin θ v0
0 0 1


 , (51)

where u0 and v0 are the affine coordinates of the prin-

cipal point, αu and αv are the pixel scale factors and θ
is the skew angle between the axes of the pixel coordi-

nates. We denote by τ = αu/αv the pixel aspect ratio.

The matrix R is a rotation matrix which gives the cam-
era orientation, and t are the coordinates of the camera

centre.

3.8.1 Image of the absolute conic and intrinsic

parameter matrix

The image of the absolute conic (IAC) given by a pro-

jection P is the set of points of the image plane whose

back-projected lines intersect the absolute conic (see
Fig. 2). Thus its matrix ω can be derived from Σ us-

ing (31) and (37) as

ω = PΣ P⊤. (52)

with P given in (30). As is well known [11] the intrinsic

parameter matrix can be retrieved from the IAC by

Cholesky factorization from the relationship ω∗ = KK⊤,
where ω∗ ∼ ω−1 is the dual of the IAC. Besides, some

intrinsic parameters can be obtained explicitly, as we

see in the following.

3.8.2 Skew angle

The skew angle can be computed as the one defined

by the back-projected lines corresponding to the image

points (1, 0, 0) and (0, 1, 0). Combining equations (31)
and (50) we obtain the formula

cos θ=
|ω12|√
ω11ω22

=
|(π2 ∧∗ π3)

⊤Σ (π3 ∧∗ π1)|
√

[(π2∧∗π3)⊤Σ (π2∧∗π3)][(π3∧∗π1)⊤Σ (π3∧∗π1)]
.

(53)

3.8.3 Aspect ratio

To compute the aspect ratio τ we observe that the im-

age points of affine coordinates (0, 0), (τ, 0), (0, 1) and
(τ, 1) are the vertices of a rhomb. Therefore the diago-

nal directions (τ, 1, 0) and (−τ, 1, 0) are orthogonal, and

we have the relation

(τ 1 0)PΣP⊤



−τ

1

0


 = 0,

from which we obtain

τ2 =
ω22

ω11
=

(π3 ∧∗ π1)
⊤Σ(π3 ∧∗ π1)

(π2 ∧∗ π3)⊤Σ(π2 ∧∗ π3)
. (54)

Observe that the well-known conditions for the pro-

jection matrices of square-pixel cameras in Euclidean
coordinates [9] are a particular case of (53) and (54) for

θ = π/2, τ = 1, and Σ = Σeuc.

3.8.4 Principal point

The principal point u0 = (u0, v0, 1)
⊤ is the image point

whose back-projected line is orthogonal to the image

plane. Taking for instance the image plane directions

e1 = (1, 0, 0)⊤ and e2 = (0, 1, 0)⊤, we have

u⊤
0 PΣP⊤ei = 0, i = 1, 2,

leading to an explicit formula in terms of the cross prod-

uct of two vectors in C3,

u0 ∼ (PΣP⊤e1)× (PΣP⊤e2)

=



ω12ω23 − ω22ω13

ω12ω13 − ω11ω23

ω11ω22 − ω2
12


 (55)
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Ck

ω1

ω∞

π∞

C1

ωk

Fig. 2 Obtaining the IAC from the AQC. ω∞ is the absolute conic.

3.9 Computing the DAQ from the AQC

Formula (43), giving the AQC matrix Σ in terms of
the DAQ matrix Q∗∞, can be inverted by solving an

homogeneous linear system of equations stemming from

the following properties, that are immediate from (7):

M∗(qi,qj)qi = 0

M∗(qi,qj)qk = M∗(qk,qi)qj .
(56)

In our case the M∗ matrices above can be built from

the columns of Σ using formulas (43) and (21), and
the right-multiplying ql are the unknowns. A solution

is obtained within the linear space of dimension ten of

the symmetric 4 × 4 matrices and then approximated
by the closest rank-three symmetric matrix by annuling

the smallest singular value [28, p. 35].

3.10 Obtaining a Euclidean coordinate system from
the AQC

Let Q∗∞ and (Q∗∞)euc = diag(1, 1, 1, 0) be the matrices of

the DAQ with respect to a projective and a Euclidean
coordinate system, respectively. If H is any regular 4×4

matrix such that

Q∗∞ = H(Q∗∞)eucH
⊤ (57)

then H is indeed a matrix changing from a Euclidean

coordinate system to the projective coordinate system

in which Q∗∞ is expressed (see [11, p. 447]). A practical

way to find such a factorization is to compute a SVD

of the positive semidefinite matrix Q∗∞,

Q∗∞ = Udiag(σ1, σ2, σ3, 0)U
⊤, (58)

and define H such that equation (57) holds true, e.g.

H = Udiag(
√
σ1,

√
σ2,

√
σ3, 1). (59)

However, if we are given the matrixΣ corresponding

to an arbitrary coordinate system of P3 and a factor-

ization

Σ = G⊤ΣeucG (60)

for a regular matrix G, this matrix is not necessarily

of the form H̃ for any regular matrix H. To check this,
observe that the last three columns of G⊤ are not de-

termined by (60), and this freedom is not compatible

with relation (26). In fact, equation (60) determines
matrix G up to left-multiplication by a matrix of the

form
(

U 0

C D

)

, where U is a 3 × 3 orthogonal matrix and

C, D are arbitrary 3 × 3 matrices with det D 6= 0 (see

Sect. (A.6)). Nevertheless, the factorization (60) does

provide the matrix of the change of coordinates to a

Euclidean reference, according to the following theo-
rem (proved in Sect. A.7), that formalizes the technique

proposed in [20].
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Table 3 Comparison between the DAQ and the AQC.

Dual Absolute Quadric Absolute Quadratic Complex

DAQ AQC

Matrix symbol Q∗∞ Σ = ΩQ̃∗∞Ω

Orthogonality of... planes: π⊤Q∗∞π′ = 0 lines: ℓ⊤Σℓ′ = 0

det(Q∗∞) = 0 ΣΩΣ = 0, trace (ΩΣ) = 0

Constraints rank(Q∗∞) = 3 rank(Σ) = 3

Q∗∞ is positive semidefinite Σ is positive semidefinite

Kernel ker Q∗∞ = π∞, kerΣ = β∞,

Q∗∞π∞ = 0 (set of all the lines in π∞)

Camera representation P = (π1,π2,π3)
⊤ P = (ℓ1, ℓ2, ℓ3)

⊤

= (π2 ∧∗ π3,π3 ∧∗ π1,π1 ∧∗ π2)
⊤

Projection eq. ω∗ ∼ PQ∗∞P⊤ ω ∼ PΣP⊤

Upgrading matrix H = (h1,h2,h3,h4) R = (r1, r2, r3)

Xeuc = H−1X H123 = (h1,h2,h3) = (h2 ∧∗ h3,h3 ∧∗ h1,h1 ∧∗ h2)

Factorization or Q∗∞ = H123H
⊤
123 Σ = RR⊤

change of coords. Q∗∞ = H (Q∗∞)euc H
⊤ Σ = ΩH̃ΩΣeucΩH̃⊤Ω

Euclidean form (Q∗∞)euc = diag (1, 1, 1, 0) Σeuc = diag (1, 1, 1, 0, 0, 0)

Theorem 1 We consider a factorization of the AQC

matrix of the form Σ = G⊤ΣeucG with G⊤ = (r1, . . . , r6).

Then the vectors ri, i = 1, 2, 3, can be written as r1 =

v3 ∧ v4, r2 = v1 ∧ v4, r3 = v2 ∧ v4 for some lin-

early independent vectors vi such that the matrix H⊤ =
(v1,v2,v3,v4) provides a coordinate change from the

current coordinate system to a Euclidean one, so that

points and planes transform as Xeuc = HX and πeuc =
H−⊤π, respectively.

Therefore the vectors vi are the coordinates of the

faces of a Euclidean coordinate tetrahedron. In particu-
lar, v4 is the plane at infinity. Hence the Plücker vectors

Ω r1 = v3∧∗ v4, Ω r2 = v1∧∗ v4, Ω r3 = v2∧∗ v4 represent

the three lines of the plane at infinity of the Euclidean

coordinate tetrahedron.

Observe that the decomposition (60) can be obtained
by SVD followed by setting to zero the three lowest

singular values. The vectors vi can be computed from

the ri as follows. We first obtain the L-matrices Mkl =
M(vk,vl) of the lines ri by the conditions r1 = ℓM34 ,

r2 = ℓM14 and r3 = ℓM24 . Then we find v4 as a common

vector in the kernel of the associated L∗-matrices M∗i4,

i = 1, 2, 3. Finally, substitute the value obtained for
v4 in the conditions r1 = ℓM(v3,v4), r2 = ℓM(v1,v4) and

r3 = ℓM(v2,v4), to obtain the vectors vi, i = 1, 2, 3, by

solving three linear systems of equations.

Some of the useful formulas that explain the simi-
larities between the DAQ and the AQC are summarized

in Table 3.

3.11 Characterization of the AQC matrices

The following theorem provides a characterization of

the AQC matrices.

Theorem 2 A real 6 × 6 symmetric matrix Σ is the

matrix of the AQC in some coordinate system if and

only if the following conditions hold true:

1. Σ is rank-three and positive semidefinite.

2. ΣΩΣ = 0.

3. kerΣ is the set of Plücker coordinates of the lines

of a plane.

The proof of this result is given in Sect. A.8. The third

condition seems to be very restrictive, but in fact the

first and second conditions imply that kerΣ is either

the star of lines through a point or the set of lines of
a plane, and therefore this happens to be a dichotomic

analysis, which can be verified using the formulas in

Table 1.
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Ω∞

ℓk

π∞ ℓ̄k

Ck

kth principal plane

kth image plane
Ik

Īk

Fig. 3 Intersections with the absolute conic of the isotropic lines of the camera k, with center Ck.

4 The absolute quadratic complex and cameras

with known pixel shape

We will assume that the camera can be modeled [11]

by the usual linear equation x ∼ PX, where ∼ means
equality up to a non-zero scale factor,X = (X,Y, Z, T )⊤

denotes the homogeneous coordinates of a spatial point,

x = (u, v, w)⊤ represents the homogeneous coordinates
of an image point, and P is the 3 × 4 matrix P =

K(R| − Rt), with K as in (51).

As is well known [11], it is possible to obtain a
projective calibration only from point correspondences

within two or more images. This means that, given a

set of projected points xij obtained with m cameras,
m ≥ 2, we can obtain a set of estimated matrices P̂i
and point coordinates X̂j such that x̂ij ∼ P̂iX̂j are

equal to the observed xij , where {P̂i, X̂j} are equal to

the Euclidean values {Pi,Xj} up to a 4×4 non-singular
matrix H, i.e., Pi = P̂iH and Xj = H−1X̂j .

Euclidean calibration can be defined as the obtain-

ment of a matrix H−1 changing the projective coor-
dinates of a given projective calibration to some Eu-

clidean coordinate system, i.e., one in which the abso-

lute conic has equations X2 + Y 2 + Z2 = T = 0 [25].

If the camera aspect ratio and skew are known, an

affine coordinate transformation in the image permits

to assume that the intrinsic parameter matrix has the
form

K =



α 0 u0

0 α v0
0 0 1


 . (61)

Let us consider the back-projected lines of image points

I = (1, i, 0)⊤ and Ī = (1,−i, 0)⊤. We will call them
the isotropic lines of the camera (see [4, p. 184] for

the motivation of the name). These lines intersect the

absolute conic (Fig. 3). Indeed, if X = (X,Y, Z, 0)⊤ is

the intersection of one of these two lines with the plane
at infinity, we have

(1,±i, 0)⊤ ∼ PX = KR(X,Y, Z)⊤,

so that

(X,Y, Z)⊤ ∼ R⊤K−1(1,±i, 0)⊤,

and then

X2 + Y 2 + Z2 = (X,Y, Z)(X,Y, Z)⊤

= (1,±i, 0)K−⊤RR⊤K−1(1,±i, 0)⊤

=
(
1 ±i

)(α−2 0

0 α−2

)(
1

±i

)
= 0.

According to equation (31), one of the isotropic lines

has Plücker coordinates

ℓ = P⊤(1, i, 0)⊤ = π2 ∧∗ π3 + iπ3 ∧∗ π1 (62)

the other one being its complex conjugate, so that we

have the relationship

(π2 ∧∗ π3 + iπ3 ∧∗ π1)
⊤Σ(π2 ∧∗ π3 + iπ3 ∧∗ π1)

= (π2 ∧∗ π3)
⊤Σ(π2 ∧∗ π3)− (π3 ∧∗ π1)

⊤Σ(π3 ∧∗ π1)

+ 2i(π3 ∧∗ π1)
⊤ Σ(π2 ∧∗ π3) = 0. (63)

Observe that the vanishing of the real and imaginary

parts of this expression are in fact equivalent, respec-
tively, to having aspect ratio τ = 1 and skew angle

θ = π/2, as follows from expressions (53) and (54).

Note that since Euclidean calibration amounts to
determining eight parameters, we need eight equations

as those provided by four square pixel cameras to ob-

tain a discrete number of solutions. An additional fifth

camera would be necessary to have a unique solution.
The AQC provides a way to address this problem by

means of linear equations with the drawback of having

to use a larger number of cameras.
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Fig. 4 Block diagram of the tested algorithms.

5 Algorithms and experimental results

The properties of the AQC suggest different strategies

for the recovery of the Euclidean structure of space in
a projective reconstruction obtained with square pixel

cameras. As each camera provides a pair of linear equa-

tions (real and imaginary parts of (63)) in the coeffi-

cients of the AQC, ten cameras provide 20 linear equa-
tions which, together with the linear constraint given

in Sect. 3.6, permit to compute Σ. Then the rectifying

homography H can be obtained from Σ using theorem 1.
This technique, introduced in [20] and [30] has the ad-

vantage of providing a unique solution and the disad-

vantage of a potentially dangerous noise sensitivity.

But the theory of the AQC also provides us with

cost functions that we can try to minimize with re-

spect to the Euclidean upgrading matrix H employing
a suitable parametrization of Σ. A technique of this

type was first proposed in [20], considering then only

the restriction associated with cameras with rectangu-

lar pixels (θ = π/2). An alternative approach consists
in the minimization of a cost function in terms of Σ, im-

posing on it the quadratic constraints (39). In [32] an

algorithm is proposed that addresses this constrained
optimization problem employing Sequential Quadratic

Programming.

Observe that the non-linear refinement requires a
minimum of five cameras instead of the ten cameras

required by the linear algorithms. This is because four

square pixel cameras provide eight non-linear equations
in terms of H, and eight is the number of parameters on

which the unknown absolute conic depends. Thus four

cameras provide a finite number of solutions, and five

cameras yield in general a single solution. Although, as
we will see, non-linear algorithms can be less sensitive

to noise, they depend on the use of another algorithm

for their initialization with an approximate solution.

In this section we present new non-linear autocal-

ibration algorithms based on the AQC. To evaluate
them rigorously we have divided the processing chain

into basic building blocks, which have been exhaustively

tested on synthetic data. Additionally, results on 3D re-
construction with real images are provided at the end

of the section.

5.1 Description of the algorithms

The tested algorithms are summarized in Fig. 4. The
processing starts with the block Projective Calibra-

tion, which is performed in two steps. The first one im-

plements the fundamental matrix Gold Standard algo-
rithm [11, p. 268] applying it to two of the cameras. The

other cameras are calibrated from these using resec-

tioning [11, p. 166]. This projective calibration is then

improved using a projective factorization [11, p. 430].

Once obtained the projective calibration, we pro-
ceed to compute an Euclidean upgrading using the Lin-

ear AQC Computation given in Sect. 4. With this ini-

tial Euclidean upgrading, we perform a thorough test-
ing of different possibilities for the improvement of the

initial result, namely:

1. Perform directly Euclidean Bundle Adjustment us-

ing as starting point the Euclidean reconstruction
provided by the linear algorithm. Euclidean bundle

adjustment aims at minimizing the reprojection er-

ror

g(Ki, Ri, ti,Xj) =

m,n∑

i,j=1

d(PiXj ,xij)
2, (64)

Pi = Ki(Ri| − Riti),

where square-pixel conditions are enforced on the

intrinsic parameter matrices Ki.
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2. Apply first nonlinear optimization to improve the

initial estimation of the AQC and then perform Eu-
clidean bundle adjustment. Two possible non-linear

cost functions have been tested. The first one con-

sists in minimizing

g(H) =

m∑

i=1

(
ǫiθ(H)

2 + ǫiτ (H)
2
)
,

where ǫiθ(H) = 1 − θ(P̂i, Σ(H))/θi, and ǫiτ (H) = 1 −
τ(P̂i, Σ(H))/τi are, respectively, the relative errors

in the θ and τ parameters for camera i, θi is the

known skew angle and τi the known aspect ratio for

camera i. Functions θ and τ are obtained from for-
mulas (53) and (54). We compute Σ(H) according to

(44) and (57). This corresponds to Minimization

of Error in Pixel Shape in Fig. 4. A Euclidean
bundle adjustment is applied afterwards.

The other cost function we have considered is

g(H) =

m∑

k=1

∣∣∣∣∣
ℓ⊤k Σ(H)ℓk

‖ℓk‖2‖Σ(H)‖F

∣∣∣∣∣

2

, (65)

where ℓk is one of the isotropic lines of the k-th cam-

era. This corresponds to Minimization of Alge-

braic Distance in Fig. 4. In both cases, the Leven-
berg -Marquardt algorithm is used in the optimiza-

tion.

3. Alternatively, perform a modified version of projec-
tive bundle adjustment including a penalty term to

enforce square-pixel cameras. This is called Mixed

Bundle Adjustment in Fig. 4, and consists in min-

imizing the cost function

g(Pi,Xj , H) =

m,n∑

i,j=1

d(PiXj ,xij)
2

+ ξ

(
m∑

i=1

ǫiθ(Pi, H)
2 + ǫiτ (Pi, H)

2

)
, (66)

where ξ is a weighting factor that we set as ξ = n2,

ǫiθ(Pi, H) = 1 − θ(Pi, Σ(H))/θi and ǫiτ (Pi, H) = 1 −
τ(Pi, Σ(H))/τi, with functions θ and τ deriving from

(53) and (54). Note that the cost function g(Pi,Xj , H)

is overparametrized, since the Euclidean variables
P′i = PiH and X′

j = H−1Xj should suffice. However,

the overparametrization has been found to produce

slightly better numerical results.

Non-linear optimization has been implemented using
the standard Levenberg-Marquardt algorithm as de-

scribed in [23]. Convergence criterion is given by the

bounds for the maximum number of iterations (50) and

for the value of the Levenberg-Marquardt exploration-
exploitation parameter lambda (< 105).

Sparse implementation of the Levenberg-Marquardt

bundle adjustment has been used.

5.2 Experiments with synthetic data

The scheme has been tested with synthetic data in a

series of experiments involving the reconstruction of a

set of 100 points from their projections in 10 to 40 im-

ages taken with cameras with varying parameters. The
3D points lie close to the origin of coordinates of a Eu-

clidean reference and the cameras are located at ran-

dom positions lying approximately over a sphere cen-
tered at the origin and roughly pointing towards it, so

that the set of projected points is approximately cen-

tered in the virtual CCD. Skew angle and aspect ratio
are fixed at respective values π/2 and 1. Normalized

focal length α is selected in each experiment at random

with a uniform distribution centered at 2000 pixels with

a maximum deviation of ±10% from this value. The
principal point is obtained from a uniform distribution

with support in the square [±400,±300], to simulate

a large variation. With these parameters the projected
point coordinates have values within the range of an im-

age of 1000× 750 pixels and, in each image, the points

are contained inside a square of side 500 pixels.

For each camera configuration, Gaussian noise with
standard deviation σ between 0 and 5 pixels is added

to the projected point coordinates. This is the input of

the algorithms in Fig. 4.

We compare the results of the algorithms in terms of

reprojection error, error in the estimation of the camera
intrinsic parameters, and computational cost. We first

discuss the results for 15 cameras, shown in Fig. 5. The

effect of varying the number of cameras will be analyzed
later.

Our experiments also included the use of Euclid-

ean Bundle Adjustment after Minimization of Al-

gebraic Distance (C’ in Fig. 4) with results indistin-
guishable from those of node D. Therefore, they have

been included in order to make the graphics more read-

able.

We first study the residual reprojection error (top-

left graph and table in Fig. 4), including also the data
for projective bundle adjustment. As is well known,

there is a lower bound of this error [11, p.121] given

by ǫ2/σ2 = 1 − d/N where N is the number of mea-
surements and d is the number of parameters on which

the solution depends. So in the case of a projective re-

construction we have N = 2mn, where n is the num-
ber of points and m the number of images, and d =

3n+11m−15, since we have three parameters for each

3D point, eleven parameters for each projection ma-

trix and we have to subtract 15 parameters to account
for the projective world frame ambiguity. The case of a

Euclidean reconstruction with square-pixel cameras is

analogous except for the number of parameters of each



14 José I. Ronda et al.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Image noise standard deviation (pixels)

R
ep

ro
je

ct
io

n 
E

rr
or

 (
pi

xe
ls

)

15 cameras

A

D

D´

D´´

A B C C’ D D’ D’’
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Node in the diagram

T
im

e 
(s

ec
on

ds
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Image noise standard deviation (pixels)

F
oc

al
 L

en
gt

h 
E

rr
or

 (
%

)

15 cameras

B
C
C´
D
D´
D´´

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

Image noise standard deviation (pixels)

P
rin

ci
pa

l P
oi

nt
 E

rr
or

 (
pi

xe
ls

)

15 cameras

B
C
C´
D
D´
D´´

Projective BA (theoretical bound) 4.6097

Euclidean BA (theoretical bound) 4.6296

Projective BA (experimental) 4.6113

A 4.7037

D 4.6323

D’ 4.6360

D” 4.6866

Fig. 5 Results for 15 cameras. BA stands for bundle adjustment. Top left: Average residual reprojection error of the tested
algorithms. Numbers refer to the nodes in the block diagram of Fig. 4. Top right: Cumulated computation time required to
reach each node (black) and computation time spent in the block previous to the node (light gray). Middle left: Error in focal
length estimation. Middle right: Error in principal point estimation. Bottom: Reprojection errors for noise σ = 5.

projection matrix, that is 9, and the number of am-

biguous parameters of the world frame, which is 7 (a
similarity transformation). Therefore

ǫ2proj/σ
2 = 1− (3n+ 11m− 15)/(2mn)

ǫ2euc/σ
2 = 1− (3n+ 9m− 7)/(2mn)

(67)

in the cases of projective reconstruction and Euclidean

reconstruction, respectively. In our experiments, the resid-

ual reprojection errors of all the considered autocalibra-
tion algorithms are nearly optimal.

Regarding the comparison of the computational costs,

the direct use of Euclidean Bundle Adjustment right

after the Linear AQC computation (node D”) repre-

sents the worst case. Of the other two Euclidean recon-
struction algorithms (D and D’), Mixed Bundle Ad-

justment is computationally the most efficient.

Now we compare the errors in the estimation of the
camera intrinsic parameters. First we observe that, as

expected, there is a noticeable improvement if any of

the non-linear optimization techniques is included after

Linear AQC Computation (node B). Among them, Mi-
nimization of Error in Pixel Shape plus Euclid-

ean Bundle Adjustment (node D) provides the best

results, while the direct use of Euclidean Bundle Ad-
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Fig. 6 Errors in the estimation of the focal length (top) and principal point (bottom) as a function of the number of cameras.
Left: σ = 1. Right: σ = 5.

justment (node D”) is the worst option in spite of
showing, as mentioned before, the highest computa-

tional cost. On the other hand, Mixed Bundle Adjust-

ment (node D’) provides results very close to those of

the optimal technique with noticeably computational
saving and thus is our option of choice.

Figure 6 shows the influence of the number of cam-
eras in the focal length and principal point errors, show-

ing an early saturation effect. The computation time is

not shown, as it is approximately proportional to the
number of cameras. From these curves we observe that

there is a meaningful improvement of the results when

the number of cameras increases from 10 to 15, but the
improvement is marginal beyond this point.

5.3 Experiments with real images

In this section we present the experimental results of
our algorithms tested on three real datasets: Checker-

board, Books, and Kings’ Courtyard. The first dataset

includes three checkerboard patterns to estimate di-

rectly the intrinsic parameters of the cameras in or-
der to compare them to the results of our algorithms.

Table 4 shows some parameters of the data sets. The

images and VRML reconstructions are available in

http://www.gti.ssr.upm.es/~jir/comp_vis/AQC.

Table 4 Parameters of the experiments with real data.

Checker- Kings’

board Books Courtyard

Image size (pixels) 1280×960 640×480 1024×768
Total images 25 18 23

Points matched 283 76 443

Avg. visible points 234 56 372

For the Checkerboard dataset, 25 images of size 1280×
960 pixels were acquired with a digital camera. For the

first 17 images, an equivalent focal length (in a 35 mm
film) of 50 mm was selected, while for the last 8 images

the focal lenght was doubled to 100 mm. Note that vari-

ations due to auto-focus could not be controlled.
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Table 5 Reprojection errors in pixels for the experiments with real data.

Algorithm Checkerboard Books Kings’ Courtyard

Gold Standard 0.518 1.05 1.30
Projective BA (first iterations) 0.330, 0.320, 0.317 0.592, 0.561, 0.553 0.529, 0.505, 0.498

Projective BA (final) 0.313 0.55 0.48

Eucl. BA (node D) 0.316 0.56 0.49

Mixed BA 0.318 0.55 0.49
Estimated noise σ 0.326 0.605 0.5

Table 6 Intrinsic parameter comparison for the experiment with the Checkerboard dataset. For each statistic, the top row
corresponds to the value for cameras with f = 50 mm (equivalent in 35 mm film) and the bottom row corresponds to cameras
with f = 100 mm. Absolute data are given in pixels. Relative data are given with respect to a half of the image diagonal.

Statistic Three-Homography

algorithm

Euclidean BA (Node D

in Fig. 4)

Mixed BA (Node D’

in Fig. 4)

Mean focal length α 1842 1846.8 1846.1

3565 3555 3556.7

α standard deviation 19.82 3.95 7.67
47.33 20.29 32.46

Mean pp (u0, v0) (625.2, 474.3) (622.8, 484.4) (625.29,486.13)

(647.4, 527.3) (604.1, 518.8) (611.57,520.84)

Mean dist. pp. to mean pp. 19.72 5.38 8.6

59.73 21.8 27.88

Std. dev. of dist. to mean pp. 12.96 3.58 6.4
36.11 8.61 16.82

Dist. mean pp. to image center 15.83 (1.98%) 17.7 (2.21%) 15.93 (2%)

47.91 (5.99%) 52.83 (6.6%) 49.77 (6.22%)

A total of 283 points were matched across the im-

ages, with an average of 234 visible points per image,
the checkerboard calibration rig consisting of 189 points.

The matched points were taken as input of the algo-

rithms summarized in Fig. 5. Due to the difficulty of
using projective factorization with occluded points, this

module has been substituted by one iteration of projec-

tive bundle adjustment [12, p. 423]. The residual RMS
reprojection errors are shown in Table 5. The small

value of this parameter after projective bundle adjust-

ment (0.31 pixels) reveals that the points were accu-

rately detected and that for the two chosen focal lengths
the effect of radial distortion can be neglected. Further-

more, from the residual reprojection error after projec-

tive bundle adjustment the noise in the point positions
can be estimated using formulas (67) as σ = 0.326 pix-

els. So the signal-to-noise ratio is of the order of 2×103,

i.e., about eight times the minimum considered in the
simulations.

Due to the bad performance observed in Sect. 5.2

of the algorithm associated to the node D” (Fig. 4),

it was decided to exclude this algorithm from the real

data intrinsic parameters comparison. Therefore, the
comparison shown in Table 6 only involves nodes D, D’

and the parameters estimated through the rig pattern.

For the latter we use algorithm in [12, p. 211], which
recovers the intrinsic parameters by linear estimation

of the IAC from three homographies determined by the

projected rig points, without requiring the knowledge
of the projection matrix. We have modified this three-

homography algorithm, imposing that the computed

IACs are consistent with the square pixel hypothesis.

The digital camera used to acquire the images has a

CCD sensor of 8.8× 6.6 mm, which implies a (square)
pixel size of 6.875 µm for the image size in this dataset.

A 50 mm focal length in a 35 mm film sensor corre-

sponds to a focal length of 12.71 mm in our sensor size,
i.e., 1849 pixels given the known pixel size. Such value is

very close to those obtained by the different algorithms

tested (first row of Table 6).

Table 6 also shows a strong agreement between the

values of the intrinsic parameters obtained through the
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Fig. 7 Four images and two views of the reconstructed Checkerboard scene.

proposed methods and the values derived from the cali-

bration rig. The three-homography algorithm estimates
the intrinsic parameters of every camera independently

of the rest of the cameras, solely based on the 2D rig

point correspondences. This might explain why the stan-

dard deviations of this calibration algorithm are larger
than those observed for the two other algorithms in Ta-

ble 6.

Figure 7 shows two views of the VRML reconstructed

scene corresponding to the algorithm of mixed bundle
adjustment.

We also present two more reconstructions, for Books
and Kings’ Courtyard. These have a smaller signal-to-

noise ratio than Checkerboard, as evidences the esti-

mated noise standard deviations in Table 5.

The Books dataset consists of 18 images of 640 ×
480 pixels. A partial reconstruction of this scene was
obtained by selecting 76 points, with an average of 56

simultaneously visible. In this experiment, zoom was

randomly changed for the different images.

The third dataset comprises 23 images of 1024×768
pixels of the Kings’ Courtyard of the Royal Monastery

of San Lorenzo de El Escorial (Madrid, Spain), from

which 443 point correspondences were selected, with an
average of 372 points per image simultaneously visible.

Figures 8 and 9 show respectively two views of these

two VRML reconstructed scenes corresponding to the

algorithm of minimization of the error in the pixel shape.
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Fig. 8 Four views of the first reconstructed 3D scene. The ones on the left shows camera positions.

6 Conclusions

This paper provides an algorithm-oriented reformula-

tion of the set of lines intersecting the absolute conic.
This object is a quadric in a five-dimensional projective

space called absolute quadratic complex (AQC).

We have provided a self-contained matrix formula-

tion of the AQC. New properties of the AQC have been

presented to obtain new autocalibration algorithms. The

new results include closed-form expressions for the skew-
angle of the camera (53), the pixel aspect ratio (54) and

the principal point location (55) in terms of the AQC.

We propose a new algorithm to obtain the DAQ from
the AQC using straightforward matrix operations in

Sect. 3.9. We have provided a sound mathematical foun-

dation of the computation of an Euclidean-upgrading
homography from the AQC proposed in [20]. We have

also characterized (equations (27)) the 6 × 6 matrices

acting on lines which are induced by a spatial homog-

raphy, completing a result given in [2]. A mathematical
proof of the fact that the operation attaching to each

spatial homography its line homography is invariant un-

der transposition (equation (28)) has been given as well,

which is an algebraic translation of the self-dual nature

of lines in 3D-space.

New autocalibration algorithms, Mixed Bundle Ad-

justment and Minimization of Error in Pixel Shape,

are proposed and compared with some other alterna-
tives. Our main conclusion is that the Minimization

of Error in Pixel Shape followed by Euclidean Bun-

dle Adjustment provides the best result, although Mixed

Bundle Adjustment produces almost equivalent results
with a lower computational cost. The saturation phe-

nomenon on the number of cameras has been shown.

Applicability of the algorithms to obtain 3D recon-
structions with real images obtained with cameras with

known pixel shape and otherwise arbitrarily varying in-

trinsic parameters has been empirically tested.

A Appendix: Proofs

A.1 Properties of antisymmetric matrices

As antisymmetric matrices are of even rank, a 4 × 4

antisymmetric matrix can only have rank zero, two, or

four, so that non-null 4× 4 singular antisymmetric ma-
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Fig. 9 Two views of the second reconstructed 3D scene (Kings’ Courtyard of El Escorial monastery, Madrid) showing camera
positions.
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trices can only be of rank two. We state this explicitly

for further reference.

Remark A1 Non-null 4 × 4 singular antisymmetric

matrices are of rank two.

Let A be a singular non-null antisymmetric matrix

and let us take two different vectors u and v spanning
its kernel. Let us consider a change of coordinates p′ =

Hp, so that u′ = (1, 0, 0, 0) and v′ = (0, 1, 0, 0). The

antisymmetric matrix A′ = H−⊤A H−1 satisfies A′u′ = 0,
A′v′ = 0, which imply that all the entries of A′ vanish

excepting A′3,4 = −A′4,3. Therefore A′ is defined up to a

scalar factor and so is A. So we have:

Remark A2 A rank-two 4 × 4 antisymmetric matrix

is determined by its kernel up to a proportionality con-

stant.

A.2 Incidence between lines in terms of Plücker
matrices

Two lines l2 and l3, given by points p1, q1 and p2, q2 re-

spectively, will intersect if and only if det(q1,p2,q2,p1) =

0. But this determinant is, from (7),

det(q1,p2,q2,p1)

= q⊤
1 M

∗(p2,q2)p1

= 1
2 [q

⊤
1 M

∗(p2,q2)p1 − p⊤
1 M

∗(p2,q2)q1]

= 1
2 [trace(q

⊤
1 M

∗(p2,q2)p1)− trace(p⊤
1 M

∗(p2,q2)q1)]

= 1
2 [trace(p1q

⊤
1 M

∗(p2,q2))− trace(q1p
⊤
1 M

∗(p2,q2))]

= 1
2 trace(p1q

⊤
1 M

∗(p2,q2)− q1p
⊤
1 M

∗(p2,q2))

= 1
2 trace(M(p1,q1)M

∗(p2,q2))

= 1
2 trace(L1L

∗
2) = 0. (68)

A.3 Plücker coordinates and linear mappings

Now we prove the properties of L-matrices stated in

Sect. 2.1. The corresponding properties of L∗-matrices

result from point-plane projective duality.

The point coordinate change p′ = Hp induces the

change of Plücker coordinates

ℓM(Hp,Hq) = ℓHM(p,q)H⊤ = H̃ ℓM(p,q). (69)

To obtain the k-th column of H̃ we have to compute

the new Plücker coordinates of the line with original
Plücker coordinates given by the k-th element of the

canonical basis of C6. Denoting by hl the columns of

H and using (21) we have that ℓM(Hei,Hej) = ℓM(hi,hj) =

hi ∧ hj = H̃ ℓM(ei,ej). From this equation and (14), we

obtain the columns of H̃:

H̃ =
(
h3 ∧ h4 h1 ∧ h4 h2 ∧ h4 h3 ∧ h1

h2 ∧ h3 h1 ∧ h2

)
. (70)

The matrices of this form have the property H̃⊤ΩH̃ =

ρΩ. This is geometrically clear, since H̃ maps Plücker

coordinates onto Plücker coordinates so it must pre-

serve Ω. However, a direct proof will also allow us to
compute the scaling factor ρ. We observe from (70) that

the entries of the matrix H̃⊤ΩH̃ are of the form

(hi ∧ hj)
⊤Ω(hk ∧ hl).

Then, making use of the relationship

(x ∧ y)⊤Ω(z ∧w) = det(x,y, z,w), (71)

that stems from (20) and (68), we can compute

H̃⊤ΩH̃ = det(H)Ω. (72)

Note that the construction of H̃ from H can be done

regardless of the regularity of H and that a continuity

argument shows that formula (72) holds true also for
singular matrices.

A.4 A necessary and sufficient condition for a 6× 6
matrix A to be of the form H̃

A 6× 6 matrix A = (a1, . . . ,a6) is of the form A = H̃ for
some regular matrix H if and only if

A⊤ΩA ∼ Ω (73)

L∗1L2L
∗
3 = 0 (74)

where the Li are Plücker matrices defined by the condi-

tion ℓLi = ai, whose existence is warranted by (73) as

explained below.

To prove this result we observe, using (73), that the

columns a1, . . . ,a6 of A are Plücker coordinates of lines,

since a⊤i Ωai = 0, and each line intersects all the others
but one, as a⊤i Ωaj = 0 for j 6= 7 − i. Since a1,a2
and a3 intersect pairwise, they are either coplanar or

incident in a common point. If A = H̃ for some H, we
are in the second case according to (25). Equation (74)

(see Table 1) characterizes this configuration. Now, a

straightforward combinatorial argument shows that the

last three columns of A represent coplanar lines that
form together with the first three lines the edges of a

tetrahedron. Let us denote by p1, . . . ,p4 a set of vectors

representing the vertices of this tetrahedron, so that
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p1 = a2 ∩ a4 ∩ a6, p2 = a3 ∩ a5 ∩ a6, p3 = a1 ∩ a4 ∩ a5,

p4 = a1 ∩ a2 ∩ a3. Therefore we have

A =
(
λ1p3 ∧ p4 λ2p1 ∧ p4 λ3p2 ∧ p4 λ4p3 ∧ p1

λ5p2 ∧ p3 λ6p1 ∧ p2

)

for some coefficients λi. Defining

H =
(√

λ4

√
λ6√

λ5

p1

√
λ5

√
λ6√

λ4

p2

√
λ4

√
λ5√

λ6

p3 λ1

√
λ6√

λ4

√
λ5

p4

)

it follows that A = H̃. To check this it is necessary to use

the identities λ1λ6 = λ2λ5 = λ3λ4, which follow from

a⊤1 Ωa6 = a⊤2 Ωa5 = a⊤3 Ωa4 and (71). This completes
the proof.

We can obtain an interesting alternative formula for
H̃ using M∗ matrices. We recall that, given a cooordinate

change p′ = Hp, the corresponding coordinate change

for planes is α′ = H−⊤α, and the resulting coordinate
change for Plücker coordinates will be

ℓM∗(α′,β′) = ℓM∗(H−⊤α,H−⊤β)

(13)
= ℓdet(H−1) H M∗(α,β) H⊤

= det(H−1) ℓH M∗(α,β) H⊤

(69)
= det(H−1)H̃ ℓM∗(α,β). (75)

Let us define

Ĥ = det(H−1) H̃. (76)

From (75), Ĥ−1 ℓM∗(α′,β′) = ℓM∗(H⊤α′,H⊤β′). Therefore,
denoting by v⊤

i the rows of H, we can prove in a similar

way to (70) that

Ĥ−1 =
(
v1 ∧∗ v2 v2 ∧∗ v3 v3 ∧∗ v1 v2 ∧∗ v4

v1 ∧∗ v4 v3 ∧∗ v4

)
. (77)

Using (72) we obtain H̃⊤ = det(H) ΩH̃−1Ω, and from

(76) and (22),

H̃⊤ = ΩĤ−1Ω =
(
v3 ∧ v4 v1 ∧ v4 v2 ∧ v4 v3 ∧ v1

v2 ∧ v3 v1 ∧ v2

)
, (78)

where we have used that right-multiplying a matrix by

Ω reverts the order of the columns. Comparison of (78)

with (70) yields H̃⊤ = H̃⊤ (cf. [2]).

A.5 Plücker coordinates and projections

Let us consider a camera given by a projection matrix

P = (π1,π2,π3)
⊤. A point X ∈ P

3 belongs to the back-

projected line of x = (u, v, w)⊤ if and only if x ∼ PX,

or equivalently, x× PX = 0, i.e.,

x× PX = [x]× PX =




0 −w v
w 0 −u

−v u 0






π⊤

1

π⊤
2

π⊤
3


X

=



vπ⊤

3 − wπ⊤
2

wπ⊤
1 − uπ⊤

3

uπ⊤
2 − vπ⊤

1


X = 0.

Therefore, the planes α1 = vπ3−wπ2, α2 = wπ1−uπ3

and α3 = uπ2−vπ1 define the pencil given by the back-

projected line of x. The Plücker coordinates of this line

will be any of the following, as long as it is not null:

α2 ∧∗ α3 = [u(π2 ∧∗ π3) + v(π3 ∧∗ π1) + w(π1 ∧∗ π2)]u

α3 ∧∗ α1 = [u(π2 ∧∗ π3) + v(π3 ∧∗ π1) + w(π1 ∧∗ π2)]v

α1 ∧∗ α2 = [u(π2 ∧∗ π3) + v(π3 ∧∗ π1) + w(π1 ∧∗ π2)]w.

At least one of the ∧
∗

products above must be non-

zero, for if the three αi ∧∗ αj vanish, we will have α1 ∼
α2 ∼ α3 and the back-projected line would not be well-

defined. Hence the common factor u(π2 ∧∗ π3)+ v(π3 ∧∗
π1) + w(π1 ∧∗ π2) must be nonzero and correspond to

the Plücker coordinates of the back-projected line. Thus

the mapping from image points to back-projected lines

is given by equation ℓ = P⊤x, where P⊤ = (π2 ∧
∗

π3 π3 ∧∗ π1 π1 ∧∗ π2).

Given the space line ℓ, a point x of the image plane

will belong to the projection of ℓ if and only if its
back-projected line P⊤x intersects ℓ, i.e., (P⊤x)⊤Ωℓ =

x⊤PΩℓ = 0. Therefore, the projection of ℓ has coordi-

nates PΩℓ, so that the matrix of the mapping from lines
in space to their projections is PΩ (cf. [9, p. 183]).

A.6 Factorization of Σ

Let

Σ = G⊤ΣeucG = G′⊤ΣeucG
′ (79)

be two decompositions of Σ. Then V⊤ΣeucV = Σeuc

where V = GG′−1. Writing V =

(
A B

C D

)
, it is easy to check

that A must be orthogonal and B = 0.

A.7 Proof of Theorem 1

We first check that ri are the Plücker coordinates of
three concurrent lines. If we define the matrix R =(
r1, r2, r3

)
, we have Σ = G⊤ΣeucG = RR⊤. There-

fore R must be a rank-three matrix, since so is Σ.
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From (39), we have ΣΩΣ = G⊤ΣeucGΩ G⊤ΣeucG = 0,

which, due to the regularity of G and the fact that
ΣeucG = (R, 06×3)

⊤, implies R⊤ΩR = 0, so that for

i = 1, 2, 3 we have r⊤i Ω rj = 0. These relationships

mean, according to (19) and (20), that the ri represent
Plücker coordinates of lines intersecting pairwise.

Therefore there are two possible geometrical config-
urations for the lines represented by the ri: either they

are non-coplanar lines intersecting in a common point

or they are three lines in a common plane pairwise in-

tersecting in three different points. Being R rank-three,
these two possibilities are mutually excluding. To deter-

mine the actual configuration, we will make use of the

fact that the kernel of Σ are the lines of a plane (the
plane at infinity, see the comment after formula (39)).

Let us first observe that the kernel of ΣΩ consists ex-

actly of those lines intersecting the three lines ri. To
check this, take s to represent any line intersecting the

ri, so that r⊤i Ωs = 0, i = 1, 2, 3. Therefore R⊤Ωs = 0,

and then RR⊤Ωs = ΣΩs = 0, so s ∈ ker(ΣΩ). Since

both ker(ΣΩ) and the set of the lines that intersect the
ri are linear spaces of the same dimension (being the

latter either the set of lines through the common point

or in the common plane), they coincide.

As kerΣ are the lines of a plane, ker(ΣΩ) = Ω kerΣ

is a star of lines through a point (22). We conclude

that the ri share a common point v4. Let us take three
vectors vi, i = 1, 2, 3, such that r1 = v3 ∧ v4, r2 =

v1 ∧ v4, r3 = v2 ∧ v4. We define the matrix H⊤ =

(v1,v2,v3,v4) so we can write our factorization as

Σ = RR⊤ =
(
v3 ∧ v4 v1 ∧ v4 v2 ∧ v4

)

·
(
v3 ∧ v4 v1 ∧ v4 v2 ∧ v4

)⊤

= H̃⊤ΣeucH̃,

where formulas (28) and (25) have been used. Therefore

H is the matrix of the change of basis to a Euclidean

coordinate system, i.e., points satisfy Xeuc = HX.

A.8 Proof of Theorem 2

The necessity of the conditions follows from Sect. 3.4,
equation (39), and the subsequent discussion.

Sufficiency results from the fact that these condi-

tions are exactly those used in the proof of Theorem 1 to
obtain a change of coordinates that convertsΣ intoΣeuc.
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