29 research outputs found

    Perturbative power Q^2-corrections to the structure function g(1)

    Get PDF
    We prove that regulating infrared divergencies generates power (~1/(Q^2)^k) corrections to the spin structure function g_1 at small x and large Q^2. At the same time it leads to the corrections ~(Q^2)^k at small Q^2. We present the explicit series of such terms as well as the formulae for their resummation. These contributions are not included in the standard analysis of the experimental data. We argue that accounting for such terms can sizably change the impact of the other power corrections conventionally attributed to the higher twists.Comment: Theoretical grounds for our approach are considered in much more detailed way than in the previous version; 10 pages, 2 figure

    Consensus-Phenotype Integration of Transcriptomic and Metabolomic Data Implies a Role for Metabolism in the Chemosensitivity of Tumour Cells

    Get PDF
    Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    The multifaceted biology of plasmacytoid dendritic cells

    No full text

    Free-Radical Chain-Growth Polymerization

    No full text
    corecore