22 research outputs found

    Climate change and the role of education

    Get PDF
    A review of the global policy environment for climate change and sustainable development education is contextualised with a case study from the Pacific region. The case study details how Pacific island nations have opted for a regional education response to improve their prospects of adapting to climate change - their most pressing contemporary issue. The case study then details what this means in practice using a bottom-up examples of successful disaster risk reduction in Tuvalu and Fasi village, Tonga led by Anglican youth

    Plastic debris on Pacific Islands: Ecological and health implications

    Get PDF
    © 2019 Plastic debris is a worldwide problem. This is particularly acute in the Pacific region, where its scale is a reason for serious concerns. There is an obvious need for studies to assess the extent to which plastic debris affects the Pacific. Therefore, this research aims to address this need by undertaking a systematic assessment of the ecological and health impacts of plastic debris on Pacific islands. Using pertinent historical qualitative and quantitative data of the distribution of plastic debris in the region, this study identified pollution and contamination trends and risks to ecosystems, and suggests some measures which may be deployed to address the identified problems. The study illustrates the fact that Pacific Island States are being disproportionately affected by plastic, and reiterates that further studies and integrated strategies are needed, involving public education and empowerment, governmental action, as well as ecologically sustainable industry leadership. It is also clear that more research is needed in respect of developing alternatives to conventional plastic, by the production of bio-plastic, i.e. plastic which is produced from natural (e.g. non-fossil fuel-based sources) materials, and which can be fully biodegradable

    Resilience in education: An example from primary school in Fiji and technical vocational education and training

    Get PDF
    In the Pacific, the capacity of curriculum writers for integrating the content of climate change into their curricula and/or taught Resilience [Climate Change Adaptation (CCA) & Disaster Risk Reduction (DRR)] in education is limited. This paper described the findings of a 2018 study on the integration of climate change into primary and secondary schools’ curricula and taught resilience in education in TVET. It involves teachers (n = 30) from Kadavu and Levuka islands, curriculum writers and editors from the Ministry of Education, GIZ, SPC, and USP—in Fiji. An exploratory design was used to explore the curricula for Fiji and the EU PacTVET project at SPC. Information was collected from workshops and training events, interviews and project documents. Using BEKA (Benchmarking, Evidencing, Knowing, Applying) and the concept of ako (e.g. to study or educate), a model of climate change and resilience in education was designed as part of this research to help Pacific schools with their curricula. These results indicate how behavioural changes may shape Resilience, thus placing them in a better position to achieve the UNFCCC, the SDGs, the Sendai Framework and the Framework for Resilient Development in the Pacific (FRDP) targets and objectives by 2030 and beyond

    Household energy usage, indoor air pollution and health

    Get PDF
    It seems likely that households have used energy for cooking for as long as there have been households. Globally, until the industrial revolution, this would have been principally woodfuel, agricultural waste (e.g. straw), dried dung and charcoal, with some regions relying on coal and peat. Archaeological evidence suggests the use of oil lamps for lighting appears to also stretch towards the beginnings of households, with ceramic decorated lamps dating from a few thousand years BC (Cam, 2014). Today, although difficult to estimate because traditional biomass energy use (for cooking and heating) is not accurately captured in energy statistics, bioenergy sources currently supply around 10-13% (1365 to 1775 million tonnes of oil equivalent annually) of the world's primary energy making biomass the world's fourth largest energy source (Hemstock & Singh, 2015; International Energy Agency, 2017). Around 70% (955 to 1242 million tonnes of oil equivalent annually) of this bioenergy use is in developing countries. It is used in the form of traditional woodfuel (fuelwood and charcoal), agricultural residues and dung to provide domestic energy services, mostly for cooking, by burning on open fires in 41% (Bonjour et at., 2013) of households in the world. These energy sources, along with coal and peat in some areas, are often inefficiently used and can be environmentally detrimental. They are deleterious to health when used traditionally and in inefficient domestic appliances in poorly ventilated cooking areas. Gender is also an issue as women are usually customarily responsible for cooking, meaning that women and children are at greater risk of exposure to high levels of indoor air pollution. In some least developed countries and in lower income households of developed countries, biomass provides more than 90% of total energy consumption for the populations who live in rural areas (Hemstock & Singh, 2015). A common issue affecting biomass, solid fossil fuel, and oil use for domestic energy services is that the products of combustion (smoke) are harmful to health if inhaled in substantial amounts over long periods of time, often leading to a range of illnesses such as pneumonia and significant impacts on increasing rates of mortality (WHO 2018; cf. Poddar and Chakrabarti 2016). Tragically, indoor air pollution is a key causal factor child pneumonia - a leading cause of death in children under five in many least developed countries, accounting for the deaths of around half a million children under the age of 5 years annually (Mortimer, 2017). This is clearly contrary to SDG3 Good Health and Wellbeing (UN 2015). Issues surrounding indoor air pollution and health are also directly linked to SDG7: Affordable and Clean Energy, which is related to fuel and technology choices available for domestic energy services; which are in turn linked to SDGs 1, 2, 4-6 and 8-13

    Data from: Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout

    No full text
    Many fishes express high levels of intraspecific variability, often linked to resource partitioning. Several studies show that a species’ evolutionary trajectory of adaptive divergence can undergo reversals caused by changes in its environment. Such a reversal in neutral genetic and morphological variation among lake trout Salvelinus namaycush ecomorphs appears to be underway in Lake Superior. However, a water depth gradient in neutral genetic divergence was found to be associated with intraspecific diversity in the lake. To investigate patterns of adaptive immunogenetic variation among lake trout ecomorphs, we used Illumina high-throughput sequencing. The population’s genetic structure of the major histocompatibility complex (MHC Class IIβ exon 2) and 18 microsatellite loci were compared to disentangle neutral and selective processes at a small geographic scale. Both MHC and microsatellite variation were partitioned more by water depth stratum than by ecomorph. Several metrics showed strong clustering by water depth in MHC alleles, but not microsatellites. We report a 75% increase in the number of MHC alleles shared between the predominant shallow and deep water ecomorphs since a previous lake trout MHC study at the same locale (c. 1990s data). This result is consistent with the reverse speciation hypothesis, although adaptive MHC polymorphisms persist along an ecological gradient. Finally, results suggested that the lake trout have multiple copies of the MHC II locus consistent with a historic genomic duplication event. Our findings indicated that conservation approaches for this species could focus on managing various ecological habitats by depth, in addition to regulating the fisheries specific to ecomorphs
    corecore