401 research outputs found

    ESR of spin-labeled bacteriophage M13 coat protein in mixed phospholipid bilayers.

    Get PDF
    Bacteriophage M13 major coat protein was spin-labeled with a nitroxide derivative of iodoacetamide, preferentially at the single methionine that is located in the hydrophobic region of the protein. The spin-labeled protein was incorporated at different lipid-to-protein ratios in phospholipid bilayers composed of dimyristoylphosphatidylglycerol (DMPG), dimyristoylphosphatidylcholine (DMPC), or the 1:1 molar mixture of these lipids. Both conventional and saturation transfer (ST) ESR studies were performed to investigate the rotational motions of the protein over a large dynamic range. The conventional ESR spectra indicate that the mobility of the spin labelled protein in the lipid gel phase decreases in the order: DMPG > DMPC/DMPG (1:1) > DMPC. In the liquid crystalline phase, the largest mobility is found in DMPC/DMPG (1:1, mol/mol) mixtures, but the mobility is still greater in DMPG than in DMPC. The results are interpreted in terms of different degrees of protein aggregation in the different lipids. Segmental motion with rotational correlation times on the order of tens of nanoseconds, motional anisotropy, and spectral overlap complicate the analysis of the STESR spectra. An estimate of the size of the protein aggregates is found to be in the region of 85 monomer units. Removing the polar tails from the protein by proteolytic digestion results in an enhanced aggregation in the gel phase. In the liquid crystalline phase, the segmental wobbling mobility of the protein is increased relative to the native protein, whereas the overall rotational diffusion is not changed greatly

    High-energy ions from Nd:YAG laser ablation of tin microdroplets:Comparison between experiment and a single-fluid hydrodynamic model

    Get PDF
    We present the results of a joint experimental and theoretical study of plasma expansion arising from Nd:YAG laser ablation (laser wavelength λ = 1.064 Όm) of tin microdroplets in the context of extreme ultraviolet lithography. Measurements of the ion energy distribution reveal a near-plateau in the distribution for kinetic energies in the range 0.03-1 keV and a peak near 2 keV followed by a sharp fall-off in the distribution for energies above 2 keV. Charge-state resolved measurements attribute this peak to the existence of peaks centered near 2 keV in the Sn3+-Sn8+ ion energy distributions. To better understand the physical processes governing the shape of the ion energy distribution, we have modelled the laser-droplet interaction and subsequent plasma expansion using two-dimensional radiation hydrodynamic simulations. We find excellent agreement between the simulated ion energy distribution and the measurements both in terms of the shape of the distribution and the absolute number of detected ions. We attribute a peak in the distribution near 2 keV to a quasi-spherical expanding shell formed at early times in the expansion

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Modelling a Dutch Pension Fund’s Capital Requirement for Longevity Risk

    Get PDF
    Longevity risk is the risk arising from uncertainty in the prediction of future mortality. This risk must be faced by pension funds. The legislation for Dutch pension funds prescribes that the pension funds need to keep in reserve a certain level of capital for this risk. De Nederlandsche Bank (DNB), the regulator of the legislation, suggests a method for calculating this capital requirement. In this paper an alternative method is developed, that provides a better insight in the current risk. Moreover, it turns out that the resulting capital requirement from our method is less than half of the capital requirement calculated using the method suggested by DNB

    Modelling a Dutch Pension Fund’s Capital Requirement for Longevity Risk

    Get PDF
    Longevity risk is the risk arising from uncertainty in the prediction of future mortality. This risk must be faced by pension funds. The legislation for Dutch pension funds prescribes that the pension funds need to keep in reserve a certain level of capital for this risk. De Nederlandsche Bank (DNB), the regulator of the legislation, suggests a method for calculating this capital requirement. In this paper an alternative method is developed, that provides a better insight in the current risk. Moreover, it turns out that the resulting capital requirement from our method is less than half of the capital requirement calculated using the method suggested by DNB

    Modeling organic carbon accumulation rates and residence times in coastal vegetated ecosystems

    Get PDF
    Coastal vegetated “blue carbon” ecosystems can store large quantities of organic carbon (OC) within their soils; however, the importance of these sinks for climate change mitigation depends on the OC accumulation rate (CAR) and residence time. Here we evaluate how two modeling approaches, a Bayesian age-depth model alone or in combination with a two-pool OC model, aid in our understanding of the time lines of OC within seagrass soils. Fitting these models to data from Posidonia oceanica soil cores, we show that age-depth models provided reasonable CAR estimates but resulted in a 22% higher estimation of OC burial rates when ephemeral rhizosphere OC was not subtracted. This illustrates the need to standardize CAR estimation to match the research target and time frames under consideration. Using a two-pool model in tandem with an age-depth model also yielded reasonable, albeit lower, CAR estimates with lower estimate uncertainty, which increased our ability to detect among-site differences and seascape-level trends. Moreover, the two-pool model provided several other useful soil OC diagnostics, including OC inputs, decay rates, and transit times. At our sites, soil OC decayed quite slowly both within fast cycling (0.028 ± 0.014 yr−1) and slow cycling (0.0007 ± 0.0003 yr−1) soil pools, resulting in OC taking between 146 and 825 yr to transit the soil system. Further, an estimated 85% to 93% of OC inputs enter slow-cycling soil pools, with transit times ranging from 891 to 3,115 yr, substantiating the importance of P. oceanica soils as natural, long-term OC sinks

    High critical temperature above Tg may contribute to the stability of biological systems

    Get PDF
    In this study, we characterized the molecular mobility around Tg in sugars, poly-L-lysine and dry desiccation-tolerant biological systems, using ST-EPR, 1H-NMR, and FTIR spectroscopy, to understand the nature and composition of biological glasses. Two distinct changes in the temperature dependence of the rotational correlation time (R) of the spin probe 3-carboxy-proxyl or the second moment (M2) were measured in sugars and poly-L-lysine. With heating, the first change was associated with the melting of the glassy state (Tg). The second change (Tc), at which R abruptly decreased over several orders of magnitude, was found to correspond with the so-called cross-over temperature, where the dynamics changed from solid-like to liquid-like. The temperature interval between Tg and Tc increased in the order of sucrose 50°C, implying that the stability above Tg improved in the same order. These differences in temperature-dependent mobilities above Tg suggest that proteins rather than sugars play an important role in the intracellular glass formation. The exceptionally high Tc of intracellular glasses is expected to provide excellent long-term stability to dry organisms, maintaining a slow molecular motion in the cytoplasm even at temperatures far above Tg

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles

    Get PDF
    The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence spectroscopy of the single tryptophan residue of this peptide. The results show that the peptide adopts an α-helical conformation or aggregated ÎČ-sheet depending on the peptide-to-SDS ratio used. The results are compared with published data about a longer version of the peptide (i.e., MTM7). It is concluded that the bulky, positively charged arginine residue located in the center of both peptides has a destabilizing effect on the helical conformation of the SDS-solubilized peptides, leading to ÎČ-sheet formation and subsequent aggregation
    • 

    corecore