373 research outputs found

    Quantitative determination of the local structure of thymine on Cu(1 1 0) using scanned-energy mode photoelectron diffraction

    Get PDF
    The local adsorption structures of the surface species formed by interaction of thymine with a Cu(1 1 0) surface at room temperature, and after heating to not, vert, similar530 K, have been investigated. Initial characterisation by soft-X-ray photoelectron spectroscopy and O K-edge near-edge X-ray absorption fine structure (NEXAFS) indicates the effect of sequential dehydrogenation of the NH species and provides information on the molecular orientation. O 1s and N 1s scanned-energy mode photoelectron diffraction shows the species at both temperatures bond to the surface through both carbonyl O atoms and the deprotonated N atom between them, each bonding atom adopting near-atop sites on the outermost Cu surface layer. The associated bondlengths are 1.96 ± 0.03 Å for Cu–N and 1.91 ± 0.03 Å and 2.03 ± 0.03 Å for the two inequivalent Cu--O bonds. The molecular plane lies almost exactly in the close-packed View the MathML source azimuth, but with a tilt relative to the surface normal of approximately 20°. Heating to not, vert, similar530 K, or deposition at this temperature, appears to lead to dehydrogenation of the second N atom in the ring, but no significant change in the adsorption geometry

    CD103 Deficiency Prevents Graft-versus-Host Disease but Spares Graft-versus-Tumor Effects Mediated by Alloreactive CD8 T Cells

    Get PDF
    Graft-versus-host disease (GVHD) remains the main barrier to broader application of allogeneic hematopoietic stem cell transplantation (alloSCT) as a curative therapy for host malignancy. GVHD is mediated by allogeneic T cells directed against histocompatibility antigens expressed by host tissues. Based on previous studies, we postulated that the integrin CD103 is required for CD8-mediated GVHD, but not for graft-versus-tumor effects (GVT).We herein provide evidence in support of this hypothesis. To circumvent the potentially confounding influence of donor CD4 T cells, we developed an alloSCT model in which GVHD mortality is mediated by purified CD8 T cells. In this model, host-reactive CD8 T cells receive CD4 T cell help at the time of initial activation but not in the effector phase in which mature CD8 T effectors migrate into host tissues. We show that donor CD8 T cells from wild-type BALB/c mice primed to host alloantigens induce GVHD pathology and eliminate tumors of host origin in the absence of host CD4 T cells. Importantly, CD103 deficiency dramatically attenuated GVHD mortality, but had no detectable impact on the capacity to eliminate a tumor line of host origin. We provide evidence that CD103 is required for accumulation of donor CD8 T cells in the host intestinal epithelium but not in the tumor or host lymphoid compartments. Consistent with these data, CD103 was preferentially expressed by CD8 T cells infiltrating the host intestinal epithelium but not by those infiltrating the tumor, lamina propria, or lymphoid compartments. We further demonstrate that CD103 expression is not required for classic CD8 effector activities including cytokine production and cytotoxicity.These data indicate that CD103 deficiency inhibits GVHD pathology while sparing anti-tumor effects mediated by CD8 T cells, identifying CD103 blockade as an improved strategy for GVHD prophylaxis

    Elucidation of the role of the complex in hydride transfer reaction between methylene blue and 1-benzyl-1,4-dihydronictinamide by effect of γ-cyclodextrin

    Get PDF
    The kinetics of the hydride transfer reaction between Methylene Blue (MB+) and&#12288;1-benzyl-1,4-dihydronicotinamide (BNAH) were studied in 10 % ethanol-90 % water mixed solvents containing &#946;- and &#947;-cyclodextrins (&#946;-CD and &#947;-CD). The pseudo-first order rate constant shows kinetic saturation at high initial concentration of BNAH. This indicates the formation of a complex between MB+ and BNAH. The reaction was suppressed by addition of &#946;-CD, but enhanced by addition of &#947;-CD. MB+ and BNAH were separately accommodated within the &#946;-CD cavity and the cavity walls may protect the activity site of the reactants. On the other hand, in the MB+-BNAH-&#947;-CD system, the inclusion of the complex between MB+ and BNAH with &#947;-CD occurred. This effect of &#947;-CD can distinguish between the productive and non-productive nature of the complex.</p

    The insulin-like growth factor I receptor regulates glucose transport by astrocytes

    Get PDF
    Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using 18FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 201

    Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18

    Get PDF
    Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction

    Proinflammatory Phenotype and Increased Caveolin-1 in Alveolar Macrophages with Silenced CFTR mRNA

    Get PDF
    The inflammatory milieu in the respiratory tract in cystic fibrosis (CF) has been linked to the defective expression of the cystic transmembrane regulator (CFTR) in epithelial cells. Alveolar macrophages (AM), important contibutors to inflammatory responses in the lung, also express CFTR. The present study analyzes the phenotype of human AM with silenced CFTR. Expression of CFTR mRNA and the immature form of the CFTR protein decreased 100-fold and 5.2-fold, respectively, in AM transfected with a CFTR specific siRNA (CFTR-siRNA) compared to controls. Reduction of CFTR expression in AM resulted in increased secretion of IL-8, increased phosphorylation of NF-κB, a positive regulator of IL-8 expression, and decreased expression of IκB-α, the inhibitory protein of NF-κB activation. AM with silenced CFTR expression also showed increased apoptosis. We hypothesized that caveolin-1 (Cav1), a membrane protein that is co-localized with CFTR in lipid rafts and that is related to inflammation and apoptosis in macrophages, may be affected by decreased CFTR expression. Messenger RNA and protein levels of Cav1 were increased in AM with silenced CFTR. Expression and transcriptional activity of sterol regulatory element binding protein (SREBP), a negative transcriptional regulator of Cav1, was decreased in AM with silenced CFTR, but total and free cholesterol mass did not change. These findings indicate that silencing of CFTR in human AM results in an inflammatory phenotype and apoptosis, which is associated to SREBP-mediated regulation of Cav1

    M19 Modulates Skeletal Muscle Differentiation and Insulin Secretion in Pancreatic β-Cells through Modulation of Respiratory Chain Activity

    Get PDF
    Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain

    Tumor surveillance by circulating microRNAs: a hypothesis

    Get PDF
    A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance

    Common genetic variability in ESR1 and EGF in relation to endometrial cancer risk and survival

    Get PDF
    We investigated common genetic variation in the entire ESR1 and EGF genes in relation to endometrial cancer risk, myometrial invasion and endometrial cancer survival. We genotyped a dense set of single-nucleotide polymorphisms (SNPs) in both genes and selected haplotype tagging SNPs (tagSNPs). The tagSNPs were genotyped in 713 Swedish endometrial cancer cases and 1567 population controls and the results incorporated into logistic regression and Cox proportional hazards models. We found five adjacent tagSNPs covering a region of 15 kb at the 5′ end of ESR1 that decreased the endometrial cancer risk. The ESR1 variants did not, however, seem to affect myometrial invasion or endometrial cancer survival. For the EGF gene, no association emerged between common genetic variants and endometrial cancer risk or myometrial invasion, but we found a five-tagSNP region that covered 51 kb at the 5′ end of the gene where all five tagSNPs seemed to decrease the risk of dying from endometrial cancer. One of the five tagSNPs in this region was in strong linkage disequilibrium (LD) with the untranslated A61G (rs4444903) EGF variant, earlier shown to be associated with risk for other forms of cancer
    • …
    corecore