713 research outputs found

    Limiting problems for a nonstandard viscous Cahn--Hilliard system with dynamic boundary conditions

    Get PDF
    This note is concerned with a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by boundary and initial conditions. The system arises from a model of two-species phase segregation on an atomic lattice and was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp.105--118. The two unknowns are the phase parameter and the chemical potential. In contrast to previous investigations about this PDE system, we consider here a dynamic boundary condition for the phase variable that involves the Laplace-Beltrami operator and models an additional nonconserving phase transition occurring on the surface of the domain. We are interested to some asymptotic analysis and first discuss the asymptotic limit of the system as the viscosity coefficient of the order parameter equation tends to 0: the convergence of solutions to the corresponding solutions for the limit problem is proven. Then, we study the long-time behavior of the system for both problems, with positive or zero viscosity coefficient, and characterize the omega-limit set in both cases

    On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities

    Get PDF
    We study a non-local variant of a diffuse interface model proposed by Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn--Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the case of degenerate mobilities and singular potentials, which serves to confine the order parameter to its physically relevant interval. Due to the non-local nature of the equations, under additional assumptions continuous dependence on initial data can also be shown.Comment: 28 page

    Longtime behavior of nonlocal Cahn-Hilliard equations

    Full text link
    Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well

    On a Cahn--Hilliard--Darcy system for tumour growth with solution dependent source terms

    Full text link
    We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn--Hilliard--Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn--Hilliard equation through convective and source terms. Both Dirichlet and Robin boundary conditions are considered for the pressure variable, which allows for the source terms to be dependent on the solution variables.Comment: 18 pages, changed proof from fixed point argument to Galerkin approximatio

    Optimal control for a phase field system with a possibly singular potential

    Get PDF
    In this paper we study a distributed control problem for a phase field system of Caginalp type with logarithmic potential. The main aim of this work would be to force the location of the diffuse interface to be as close as possible to a prescribed set. However, due to the discontinuous character of the cost functional, we have to approximate it by a regular one and, in this case, we solve the associated control problem and derive the related first order necessary optimality conditions

    Chaotic Scattering in Heavy--Ion Reactions

    Get PDF
    We discuss the relevance of chaotic scattering in heavy--ion reactions at energies around the Coulomb barrier. A model in two and three dimensions which takes into account rotational degrees of freedom is discussed both classically and quantum-mechanically. The typical chaotic features found in this description of heavy-ion collisions are connected with the anomalous behaviour of several experimental data.Comment: 35 pages in RevTex (version 3.0) plus 27 PostScript figures obtainable by anonymous ftp from VAXFCT.CT.INFN.IT in directory kaos. Fig. 1 upon request to the authors. To be published in the October Focus issue on chaotic scattering of CHAO

    Use of transgenic Aedes aegypti in Brazil: risk perception and assessment.

    Get PDF
    The OX513A strain of Aedes aegypti, which was developed by the British company Oxitec, expresses a self-limiting transgene that prevents larvae from developing to adulthood. In April 2014, the Brazilian National Technical Commission on Biosafety completed a risk assessment of OX513A and concluded that the strain did not present new biological risks to humans or the environment and could be released in Brazil. At that point, Brazil became the first country to approve the unconstrained release of a genetically modified mosquito. During the assessment, the commission produced a comprehensive list of ? and systematically analysed ? the perceived hazards. Such hazards included the potential survival to adulthood of immature stages carrying the transgene ? should the transgene fail to be expressed or be turned off by exposure to sufficient environmental tetracycline. Other perceived hazards included the potential allergenicity and/or toxicity of the proteins expressed by the gene, the potential for gene flow or increased transmission of human pathogens and the occupation of vacant breeding sites by other vector species. The Zika epidemic both elevated the perceived importance of Ae. aegypti as a vector ? among policy-makers and regulators as well as the general public ? and increased concerns over the release of males of the OX513A strain. We have therefore reassessed the potential hazards. We found that release of the transgenic mosquitoes would still be both safe and of great potential value in the control of diseases spread by Ae. aegypti, such as the chikungunya, dengue and Zika virus disease

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure
    • …
    corecore