317 research outputs found
Order in a Spatially Anisotropic Triangular Antiferromagnet
The phase diagram of the spin-1/2 Heisenberg antiferromagnet on an
anisotropic triangular lattice of weakly coupled chains, a model relevant to
Cs2CuCl4, is investigated using a renormalization group analysis, which
includes marginal couplings important for connecting to numerical studies of
this model. In particular, the relative stability of incommensurate spiral
spin-density order and collinear antiferromagnetic order is studied. While
incommensurate spiral order is found to exist over most of the phase diagram in
the presence of a Dzyaloshinskii-Moriya (DM) interaction, at small interchain
and extremely weak DM couplings, collinear antiferromagnetic order can survive.
Our results imply that Cs2CuCl4 is well within the part of the phase diagram
where spiral order is stable. The implications of the renormalization group
analysis for numerical studies, many of which have found spin-liquidlike
behavior, are discussed.Comment: 10 pages, 7 figures, minor edits and reference adde
Seasonal Variation in Exposure Level of Types A and B Ultraviolet Radiation: An Environmental Skin Carcinogen
Background: The main source of ultraviolet radiation (UVR) is the sun, affecting organs such as the skin, eyes, and immune system. According to American Conference of Governmental Industrial Hygienist (ACGIH) reports, the amount of UVR reaching the Earth’s surface is increasing yearly and is responsible for an increase in solar radiation‑related diseases. Aims: To investigate the amount of UVR reaching the Earth’s surface and understand the risk of UVR on disease among outdoor laborers in one of the central provinces of Iran.Materials and Methods: Arak city was divided into two geographic areas, and the weekly measurement of UVR was done in three locations) asphalt, grass and rooftop). To measure UVR, Hanger UV spectrometer, standard deviation (SD8‑A), and SD8‑B detectors were used. Amounts of UVR for a consecutive year and varying weather conditions were measured. Finally, values obtained were compared to ACGIH standards. Results: The minimum and maximum levels of UV type A radiation occurred in April 1.27 (0.724) W/m2 and September 7.147 (4.128) W/m2, these figures for UV type B were in March–April 0.005 (0.003) and September 0.083 (0.077). The maximum UVR is received between 11 and 15 o’clock.Conclusions: In the central cities of Iran, the minimum and maximum UV type A and B is received in March–April and in September, respectively. Based on the results, the angular position of the sun in the sky, cloud cover, and height from ground level affected the amount of UVR received, but the geographic locations studied did not. Keywords: Outdoor Job, Skin Cancer, Carcinogen, Ultraviolet radiation, Ultraviolet A, Ultraviolet B, Ira
Reduction of intraoperative bleeding with fibrinogen administration in posterior spinal fusion surgery
Background: Spinal surgeries are frequently complicated with high rate of intra- and post-operative hemorrhage. It is shown that the serum fibrinogen level is a pivotal factor in determining the degree of intra- and post-operative hemorrhage. This study sought to examine the effect of prophylactic infusion of fibrinogen in preventing hemorrhage in candidates for posterior spinal fusion surgery. Methods: 41 patients who were candidates for posterior spinal fusion surgery were randomly devided in two groups of intervention (21 patients) and control (20 patients), receiving either infusion of fibrinogen (1 g in 100 cc of normal saline infused within 5 minutes after induction) or placebo, respectively. Changes in serum hemoglobin and fibrinogen, the severity of intraoperative hemorrhage, and the need for blood transfusion were compared between the two groups. Findings: While pre- and postoperative changes in serum hemoglobin and fibrinogen did not differ significantly between the two groups, the mean blood loss (533.3 ± 157.9 vs. 679.0 ± 130.0 ml, P = 0.003) and the need for blood transfusion (0 vs. 30 percent, P = 0.030) were significantly higher in the control group. Conclusion: Prophylactic infusion of fibrinogen in candidates for posterior spinal fusion surgery may significantly decrease the amount of intra-operative hemorrhage and the need for blood transfusion. © 2015, Isfahan University of Medical Sciences(IUMS). All Rights Reserved
Buckling instability for a charged and fluctuating semiflexible polymer
In this article we address the problem of Euler's buckling instability in a
charged semi-flexible polymer that is under the action of a compressive force.
We consider this instability as a phase transition and investigate the role of
thermal fluctuations in the buckling critical force. By performing molecular
dynamic simulations, we show that the critical force decreases when the
temperature increases. Repulsive electrostatic interaction in the finite
temperature is in competition with thermal fluctuations to increase the
buckling threshold
The Expression of TBC1 Domain Family, Member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane
The Expression of TBC1 Domain Family, member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane.
Background: Obesity is commonly accompanied by impaired glucose homeostasis. Decreased glucose transport to the peripheral tissues, mainly skeletal muscle, leads to reduced total glucose disposal and hyperglycemia. TBC1D4 gene is involved in the trafficking of GLUT4 to the outer cell membrane in skeletal muscle. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound acting by reducing blood glucose levels through mechanisms not fully understood (1). The aim of this study is to investigate the effects SFN on TBC1D4 and GLUT4 gene expression in skeletal muscles of DIO mice, in order to elucidate the mechanism(s) through which SFN improves glucose homeostasis.
Methodology: C57BL/6 mice (n=20) were fed with a high fat diet (60%) for 16 weeks to generate diet induced obese (DIO) mice with body weights between 45–50 gm. Thereafter, DIO mice received either SFN (5mg/kg BW) (n=10) or vehicle (n=10) as controls daily by intraperitoneal injections for four weeks. Glucose tolerance test (1g/kg BW, IP) and insulin sensitivity test (ITT) were conducted (1 IU insulin/ g BW, IP route) at the beginning and end of the third week of the injection.
At the end of 4 weeks of the injection, samples of blood and skeletal muscles of both hindlimbs were collected. The expression levels of GLUT4 and TBC1D4 genes were analyzed by qRT-PCR. Blood was also used for glucose, adiponectin and insulin measurements.
Results: SFN-treated DIO mice had significantly lower non-fasting blood glucose levels than vehicle-treated mice (194.16 ± 14.12 vs. 147.44 ± 20.31 mg/dL, vehicle vs. SFN, p value=0.0003). Furthermore, GTT results indicate that the blood glucose levels at 120 minutes after glucose infusion in was (199.83±34.53 mg/dl vs. 138.55±221.78 mg/dl) for vehicle vs. SFN with p=0.0011 respectively. ITT showed that SFN treatment did not enhance insulin sensitivity in DIO mice. Additionally, SFN treatment did not significantly change the expression of TBC1D4, and GLUT4 genes in skeletal muscles compared to vehicle treatment (p values >0.05).
Furthermore, SFN treatment did not significantly affect the systemic insulin (1.84±0.74 vs 1.54±0.55 ng/ml, p=0.436), or adiponectin (11.96 ±2.29 vs 14.4±3.33 ug/ml, p=0.551) levels in SFN vs. vehicle-treated DIO mice, respectively.
Conclusion: SFN treatment improves glucose disposal in DIO mice, which is not linked to the gene expression of GLUT4 and TBC1D4 and its mechanism of glucose disposal in skeletal muscles. Furthermore, SFN treatment did not improve insulin level, and the insulin sensitizer hormone adiponectin as potential players for enhancing insulin sensitivity.QNRF-NPR
Regulation of energy rheostasis by the melanocortin-3 receptor
This is the final version. Also available from AAAS via the DOI in this record.Like most homeostatic systems, adiposity in mammals is defended between upper and lower boundary conditions. While leptin and melanocortin-4 receptor (MC4R) signaling are required for defending energy set point, mechanisms controlling upper and lower homeostatic boundaries are less well understood. In contrast to the MC4R, deletion of the MC3R does not produce measurable hyperphagia or hypometabolism under normal conditions. However, we demonstrate that MC3R is required bidirectionally for controlling responses to external homeostatic challenges, such as caloric restriction or calorie-rich diet. MC3R is also required for regulated excursion from set point, or rheostasis, during pregnancy. Further, we demonstrate a molecular mechanism: MC3R provides regulatory inputs to melanocortin signaling, acting presynaptically on agouti-related protein neurons to regulate γ-aminobutyric acid release onto anorexigenic MC4R neurons, exerting boundary control on the activity of MC4R neurons. Thus, the MC3R is a critical regulator of boundary controls on melanocortin signaling, providing rheostatic control on energy storage.We would like to thank Savannah Y. Williams and Heidi Adams for excellent technical assistance with these experiments, and Taneisha Gillyard and Stephanie King for their excellent contributions to the creation of figures and illustrations. This was supported by NIH grant DK070332 (RDC & MG-L)
Nonlinear MMSE Equalizer for Impulsive Noise Mitigation in OFDM-Based Communications
© 2019 IEEE. Destructive effects of impulsive noise has been broadly observed not only in wireless communication systems but also in power-line communications. Impulsive noise is a common impediment in orthogonal frequency division multiplexing (OFDM) based communication systems for industry applications. This non-Gaussian noise degrades the performance of conventional equalizers and, hence, elicit a modified version of the equalizer that fits the non-Gaussian description of the noise. This letter proposes a nonlinear minimum mean square error equalizer for OFDM systems where the characteristics of the added noise to the system is known. The soft values were obtained based on the derivation of the equalizer for a memory-less channel impaired with impulsive noise. Obtaining such values are required for the implementation of a turbo-equalization scheme. The validity of such an equalizer is tested through simulations and the result of simulations shows that the nonlinear equalizer is successful in combating the effect of an impulsive noise. Thus, the turbo-coded OFDM system shows a significant boost at low signal-to-noise ratios
Drug-related mutational patterns in hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-Naïve chronic HBV patients
Background: Immunomodulators and Nucleotide analogues have been used globally for the dealing of chronic hepatitis B virus (HBV) infection. However, the development of drug resistance is a major limitation to their long-term effectiveness. Objectives: The aim of this study was to characterize the hepatitis B virus reverse transcriptase (RT) protein variations among Iranian chronic HBV carriers who did not receive any antiviral treatments. Materials and Methods: Hepatitis B virus partial RT genes from 325 chronic in active carrier patients were amplified and directly sequenced. Nucleotide/amino acid substitutions were identified compared to the sequences obtained from the database. Results: All strains belonging to genotype D.365 amino-acid substitutions were found. Mutations related to lamivudine, adefovir, telbivudine, and entecavir occurred in (YMDD) 4% (n = 13), (SVQ) 17.23% (n = 56), (M204I/V + L180M) 2.45% (n = 8) and (M204I) 2.76% (n = 9) of patients, respectively. Conclusions: RT mutants do occur naturally and could be found in HBV carriers who have never received antiviral therapy. However, mutations related to drug resistance in Iranian treatment-naïve chronic HBV patients were found to be higher than other studies published formerly. Chronic HBV patients should be monitored closely prior the commencement of therapy to achieve the best regimen option. © 2013, KOWSAR Corp
Channel gain for a wrist-to-arm scenario in the 55-65 GHz frequency band
Wireless communication on the body is expected to become more important in the future. This communication will in certain scenarios benefit from higher frequencies of operation and their associated smaller antennas and potentially higher bandwidths. One of these scenarios is communication between a wristband and wearable sensors on the arm. In order to investigate the feasibility of such a scenario, propagation at 55â65Â GHz along the arm is measured for two configurations. First, for increasing separation distances along the arm, and second for a transmitter is rotationally placed around the wrist. Two channel gain models are fitted to the data and used to obtain a channel gain exponent in the first configuration and loss per angle of rotation in the second configuration. These models are relevant inputs for the design of future wearable wireless systems
- …