48 research outputs found

    TOI-3235 b: A Transiting Giant Planet around an M4 Dwarf Star

    Get PDF
    We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry and confirmed with radial velocities from ESPRESSO and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665 ± 0.025 M J and a radius of 1.017 ± 0.044 R J. It orbits close to its host star, with an orbital period of 2.5926 days but has an equilibrium temperature of ≈ 604 K, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939 ± 0.0030 M ☉, a radius of 0.3697 ± 0.0018 R ☉, an effective temperature of 3389 K, and a J-band magnitude of 11.706 ± 0.025. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M dwarfs for atmospheric characterization

    Vetting Of 384 TESS Objects Of Interest With TRICERATOPS And Statistical Validation Of 12 Planet Candidates

    Get PDF
    We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false-positive probability (FPP)−nearby false-positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP \u3c 0.015 and NFPP \u3c 10−3), likely planets (FPP \u3c 0.5 and NFPP \u3c 10−3), and likely nearby false positives (NFPP \u3e 10−1). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars

    TOI-4336 A b:A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system

    Get PDF
    Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M-dwarf. We validate the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1±0.1R⊕. Its host star is an M3.5-dwarf star of mass 0.33±0.01M⊙ and radius 0.33±0.02R⊙ member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the Habitable Zone of its host star, the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST

    Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates

    Full text link
    We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false positive probability (FPP) -- nearby false positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP < 0.015 and NFPP < 10^-3), likely planets (FPP 10^-1). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.Comment: Accepted to A

    TOI-3235 b: a transiting giant planet around an M4 dwarf star

    Get PDF
    We present the discovery of TOI-3235 b, a short-period Jupiter orbiting an M-dwarf with a stellar mass close to the critical mass at which stars transition from partially to fully convective. TOI-3235 b was first identified as a candidate from TESS photometry, and confirmed with radial velocities from ESPRESSO, and ground-based photometry from HATSouth, MEarth-South, TRAPPIST-South, LCOGT, and ExTrA. We find that the planet has a mass of 0.665±0.025MJ\mathrm{0.665\pm0.025\,M_J} and a radius of 1.017±0.044RJ\mathrm{1.017\pm0.044\,R_J}. It orbits close to its host star, with an orbital period of 2.5926d\mathrm{2.5926\,d}, but has an equilibrium temperature of 604K\mathrm{\approx 604 \, K}, well below the expected threshold for radius inflation of hot Jupiters. The host star has a mass of 0.3939±0.0030M\mathrm{0.3939\pm0.0030\,M_\odot}, a radius of 0.3697±0.0018R\mathrm{0.3697\pm0.0018\,R_\odot}, an effective temperature of 3389K\mathrm{3389 \, K}, and a J-band magnitude of 11.706±0.025\mathrm{11.706\pm0.025}. Current planet formation models do not predict the existence of gas giants such as TOI-3235 b around such low-mass stars. With a high transmission spectroscopy metric, TOI-3235 b is one of the best-suited giants orbiting M-dwarfs for atmospheric characterization.Comment: 15 pages, 4 figures. Accepted for publication in APJ

    TOI-2257 b: A highly eccentric long-period sub-Neptune transiting a nearby M dwarf

    Get PDF
    N.S., R.W. and B.-O.D. acknowledge support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow and from the European Space Agency (ESA) as an ESA Research Fellow. A.A.B., B.S.S.and I.A.S. acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039). L.D. is an F.R.S.-FNRS Postdoctoral Researcher. B.V.R. thanks the Heising-Simons Foundation for support. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. and E.J. acknowledges DGAPA for his postdoctoral fellowship. Y.G.M.C. acknowledges support from UNAM-DGAPA PAPIIT BG-101321. D.D. acknowledges support from the TESS Guest Investigator Program grant 80NSSC19K1727 and NASA Exoplanet Research Program grant 18-2XRP18_2-0136. We acknowledge support from the Centre for Space and Habitability (CSH) of the University of Bern. Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). Funding for the TESS mission is provided by NASA's Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, F. Diaz, A. Franco, B. Garcia, C. Guerrero, G. Guisa, F. Guillen, A. Landa, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, G. Melgoza, F. Montalvo, J.M. Nunez, J.L. Ochoa, I. Plauchu, F. Quiroz, H. Riesgo, H. Serrano, T. Verdugo, I. Zavala. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement nffi 336480, and under the European Union's Horizon 2020 research and innovation programme (grants agreements nffi 679030 and 803193/BEBOP); from an Actions de Recherche Concertee (ARC) grant, financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from the BEL-SPO/BRAIN2.0 research program (PORTAL project), from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1), and from F.R.S-FNRS (Research Project ID T010920F). This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127), as well as by the MERAC foundation (PI: Triaud). PI: Gillon is F.R.S.-FNRS Senior Research Associate. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). M.S.I.P. is funded by NSF. Some of the observations in the paper made use of the High-Resolution Imaging instrument(s) `Alopeke (and/or Zorro). `Alopeke (and/or Zorro) was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Data were reduced using a software pipeline originally written by Elliott Horch and Mark Everett. `Alopeke (and/or Zorro) was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research made use of exoplanet (Foreman-Mackey et al. 2021a,b) and its dependencies (Agol et al. 2020; Kumar et al. 2019; Astropy Collaboration 2013, 2018; Kipping 2013; Luger et al. 2019; Salvatier et al. 2016; Theano Development Team 2016). Additional use of software packages AstroImageJ (Collins et al. 2017) and TAPIR (Jensen 2013).Context. Thanks to the relative ease of finding and characterizing small planets around M-dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs makes such objects particularly compelling as they provide clues about the formation and evolution of these systems. Aims. In this study we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8 pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit (e similar to 0.5), which would make it the most eccentric planet known to be transiting an M-dwarf star. Methods. We combined TESS and ground-based data obtained with the 1.0-meter SAINT-EX, 0.60-meter TRAPPIST-North, and 1.2-meter FLWO telescopes to find a planetary size of 2.2 R-circle plus and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. Results. With its long period and high eccentricity, TOI-2257 b falls into a novel slice of parameter space. Despite the planet's low equilibrium temperature (similar to 256 K), its host star's small size (R-* = 0.311 +/- 0.015) and relative infrared brightness (K-mag = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy.Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080MIT's Kavli InstituteEuropean Space Agency European CommissionMinistry of Science and Higher Education of the Russian Federation 075-15-2020-780 (N13.1902.21.0039)Heising-Simons FoundationFrench Community of BelgiumDGAPAPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) Universidad Nacional Autonoma de Mexico BG-101321TESS Guest Investigator Program 80NSSC19K1727NASA Exoplanet Research Program 18-2XRP18_2-0136Centre for Space and Habitability (CSH) of the University of BernSwiss National Science Foundation (SNSF)European Research Council (ERC) 336480Actions de Recherche Concertee (ARC) grant - Wallonia-Brussels FederationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) ST/S00193X/1Fonds de la Recherche Scientifique - FNRS T010920FSimons Foundation 327127MERAC foundationFonds de la Recherche Scientifique - FNRS PDR T.0120.21Swiss National Science Foundation (SNSF)National Science Foundation (NSF)NASA Exoplanet Exploration Program NASA's Science Mission DirectorateEuropean Research Council (ERC) 679030 803193/BEBOPBalzan Prize Foundation BEL-SPO/BRAIN2.0 research program (PORTAL project

    TOI-2266 b : a keystone super-Earth at the edge of the M dwarf radius valley

    Get PDF
    We validate the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-2266.01 (TIC 348911) as a small transiting planet (most likely a super-Earth) orbiting a faint M5 dwarf (V=16.54) on a 2.33~d orbit. The validation is based on an approach where multicolour transit light curves are used to robustly estimate the upper limit of the transiting object's radius. Our analysis uses SPOC-pipeline TESS light curves from Sectors 24, 25, 51, and 52, simultaneous multicolour transit photometry observed with MuSCAT2, MuSCAT3, and HiPERCAM, and additional transit photometry observed with the LCOGT telescopes. TOI-2266 b is found to be a planet with a radius of 1.54 ± 0.09,R⊕, which locates it at the edge of the transition zone between rocky planets, water-rich planets, and sub-Neptunes (the so-called M~dwarf radius valley). The planet is amenable to ground-based radial velocity mass measurement with red-sensitive spectrographs installed in large telescopes, such as MAROON-X and Keck Planet Finder (KPF), which makes it a valuable addition to a relatively small population of planets that can be used to probe the physics of the transition zone. Further, the planet's orbital period of 2.33 days places it inside a 'keystone planet' wedge in the period-radius plane where competing planet formation scenarios make conflicting predictions on how the radius valley depends on the orbital period. This makes the planet also a welcome addition to the small population of planets that can be used to test small-planet formation scenarios around M~dwarfs.Peer reviewe

    TOI-2084 b and TOI-4184 b: two new sub-Neptunes around M dwarf stars

    Full text link
    We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, SED (Spectral Energy Distribution) analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084b and TOI-4184b are sub-Neptune-sized planets with radii of Rp = 2.47 +/- 0.13R_Earth and Rp = 2.43 +/- 0.21R_Earth, respectively. TOI-2084b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of T_eq = 527 +/- 8K and an irradiation of S_p = 12.8 +/- 0.8 S_Earth. Its host star is a dwarf of spectral M2.0 +/- 0.5 at a distance of 114pc with an effective temperature of T_eff = 3550 +/- 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184b orbits around an M5.0 +/- 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of T_eq = 412 +/- 8 K and an irradiation of S_p = 4.8 +/- 0.4 S_Earth. TOI-4184 is a metal poor star ([Fe/H] = -0.27 +/- 0.09 dex) at a distance of 69 pc with an effective temperature of T_eff = 3225 +/- 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.Comment: Accepted for publication in A&
    corecore