16 research outputs found

    Rotating saddle trap as Foucault's pendulum

    Get PDF
    One of the many surprising results found in the mechanics of rotating systems is the stabilization of a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an unexpected precessional motion is observed. In this note we show that this precession is due to a Coriolis-like force caused by the rotation of the potential. To our knowledge this is the first example where such force arises in an inertial reference frame. We also propose an idea of a simple mechanical demonstration of this effect.Comment: 13 pages, 9 figure

    Linear stability of the Lagrangian triangle solutions for quasihomogeneous potentials

    Full text link
    In this paper we study the linear stability of the relative equilibria for homogeneous and quasihomogeneous potentials. Firstly, in the case the potential is a homogeneous function of degree a-a, we find that any relative equilibrium of the nn-body problem with a>2a>2 is spectrally unstable. We also find a similar condition in the quasihomogeneous case. Then we consider the case of three bodies and we study the stability of the equilateral triangle relative equilibria. In the case of homogeneous potentials we recover the classical result obtained by Routh in a simpler way. In the case of quasihomogeneous potentials we find a generalization of Routh inequality and we show that, for certain values of the masses, the stability of the relative equilibria depends on the size of the configuration.Comment: 21 pages 4 figure

    Low thrust propulsion in a coplanar circular restricted four body problem

    Get PDF
    This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model

    Detectability of quasi-circular co-orbital planets: application to the radial velocity technique

    Get PDF
    Several celestial bodies in co-orbital configurations exist in the solar system. However, co-orbital exoplanets have not yet been discovered. This lack may result from a degeneracy between the signal induced by co-orbital planets and other orbital configurations. Here we determine a criterion for the detectability of quasi-circular co-orbital planets and develop a demodulation method to bring out their signature from the observational data. We show that the precision required to identify a pair of co-orbital planets depends only on the libration amplitude and on the planet's mass ratio. We apply our method to synthetic radial velocity data, and show that for tadpole orbits we are able to determine the inclination of the system to the line of sight. Our method is also valid for planets detected through the transit and astrometry techniques

    On the coplanar eccentric non-restricted co-orbital dynamics

    Get PDF
    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.publishe
    corecore