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Rotating saddle trap as Foucault’s pendulum
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One of the many surprising results found in the mechanics of rotating systems is the stabilization of

a particle in a rapidly rotating planar saddle potential. Besides the counterintuitive stabilization, an

unexpected precessional motion is observed. In this note, we show that this precession is due to a

Coriolis-like force caused by the rotation of the potential. To our knowledge, this is the first

example where such a force arises in an inertial reference frame. We also propose a simple

mechanical demonstration of this effect.VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4933206]

I. INTRODUCTION

According to Earnshaw’s theorem, an electrostatic poten-
tial cannot have stable equilibria (minima) because such
potentials are harmonic functions. The theorem does not
apply, however, if the potential depends on time. In fact, the
1989 Nobel Prize in physics was awarded to Paul1 for his
invention of a trap for suspending charged particles in an
oscillating electric field. Paul’s idea was to stabilize the

saddle by “vibrating” the electrostatic field, by analogy with
the so–called Stephenson–Kapitsa pendulum,2–7 in which the
upside–down equilibrium is stabilized by vibration of the
pivot. Instead of vibration, the saddle can also be stabilized
by rotation of the potential (in two dimensions), as has been
known for nearly a century. As early as 1918, Brouwer
(1881–1966), one of the authors of the fixed point theorem in
topology, considered stability of a heavy particle on a rotat-

ing slippery surface.8–10

Brouwer derived the equations of motion for this system
in Refs. 8 and 9; the derivation took over 3 pages. He then
linearized the equations by discarding quadratic and higher
order terms in position and velocity. The resulting linearized
equations in the stationary frame are11–13

€x þ x cos 2xtþ y sin 2xt ¼ 0; (1)

€y þ x sin 2xt� y cos 2xt ¼ 0; (2)

where x¼X/X0 is a dimensionless angular velocity, the

dimensional angular velocity X scaled by X0 ¼
ffiffiffiffiffiffiffi

g=r
p

, and

where t is a dimensionless time, related to the dimensional

time t̂ by t ¼ xt̂.14

Equations (1) and (2) can be written in vector form as

€x þ SðxtÞx ¼ 0; (3)

where

SðxtÞ ¼ cos 2xt sin 2xt

sin 2xt �cos 2xt

� �

: (4)

We note that these equations are written in the stationary

frame, whereas Brouwer actually derived the corresponding
equations in a frame rotating with the saddle.8–10 Equations
(1) and (2), or, equivalently, Eq. (3), when written in the
rotating frame, acquire Coriolis and centrifugal forces, but

lose time-dependence because the saddle appears stationary
in the co-rotating frame; the equivalence of the autonomous
linear equations of Brouwer and the time-periodic Eqs. (1)
and (2) is well-known (see, e.g., Refs. 12 and 13).
A particle in a rotating potential. Equations (1) and (2)

also arise in a different context; they govern the motion of a
unit mass in the plane under the influence of a potential force
given by the rotating saddle potential—the potential whose
graph is obtained by rotating the graph of z ¼ ð1=2Þðx2 � y2Þ
around the z-axis with angular velocity x. This planar
problem is related to, but different from that depicted in
Fig. 1. Physically, such a problem arises, for instance, in the
motion of a charged particle in a rotating electrostatic poten-
tial, as discussed in Ref. 15.
Brouwer’s particle vs a particle in a rotating potential. If

the graph of the saddle surface in Fig. 1 is given by a func-
tion z¼ f(x, y, t), then the potential energy of the unit point
mass on the surface is U(x, y, t)¼ gf(x, y, t). If we now take
the same function U as the potential energy of a particle that
lives in the plane, we get a problem related to Brouwer’s, but
not an equivalent one. To mention one aspect of the differ-
ence between the two problems, note that, unlike a particle
in the plane, a particle on the surface feels centrifugal
velocity-dependent forces due to the constraint to the sur-
face. For the motions near the equilibrium, these forces are

Fig. 1. A unit mass on a saddle (Refs. 8–10).
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quadratically small (as was shown by Brouwer and as we
will explain shortly), and they disappear upon linearization.
And if U itself happens to be quadratic in x and y (as it is in
our case), then the equations for the two problems are the
same.

We would like to add a general remark on the difference
between two similar problems: a particle on a surface z¼ f(x,
y, t) in a constant gravitational field on the one hand, and a
particle in the plane with a potential U(x, y)¼ gf(x, y, t) on
the other. The two systems have the same potential energy;
this is the similarity. But here is the difference: the kinetic
energy for the particle in the planar potential is simply
Kplane ¼ ð1=2Þð _x2 þ _y2Þ, while for the particle on a surface
the kinetic energy is much more complicated:

2Ksurface ¼ ð1þ f 2x Þ _x2 þ 2fxfy _x _y þ ð1þ f 2y Þ _y2: (5)

Here, fx and fy denote partial derivatives of the height func-
tion f. However, because fx¼ fy¼ 0 at equilibrium, these
derivatives are small nearby and therefore Ksurface�Kplane

near an equilibrium. Thus, the near-equilibrium motions of
the two systems are quite similar.

Precessional motion in the rotating saddle trap. It has
been known since Brouwer that the motion of a particle on
a saddle is stabilized for all sufficiently high x (Refs. 16
and 17). An illustration of a similar (but not equivalent)
counterintuitive effect consists of a ball placed on a saddle
surface rotating around the vertical axis and being in stable
equilibrium at the saddle point.18 We note, however, that the
rolling ball on a surface is a non-holonomic system, entirely
different from a particle sliding on a surface.19,20

The particle trapped in the rotating saddle exhibits a
prograde precession in the laboratory frame, as illustrated in
Fig. 2. This means that the particle moves along an elongated
trajectory that in itself slowly rotates in the laboratory frame
with the angular velocity xp in the same sense as the saddle.
Up to now, this precession has been explained by analyzing
explicit solutions of the linearized equations,11,15,18 leaving
the underlying cause of this precession somewhat mysterious.

II. DERIVING THE EQUATIONS OF MOTION

The motion of a unit point mass x¼ (x, y) in any time-
dependent potential U(x, y, t) is given by

€x ¼ �rUðx; tÞ; (6)

the gradient here is taken with respect to the (x, y) coordi-
nates. The graph of our U(x, t) is obtained by rotating the
graph of U0ðx; yÞ ¼ ð1=2Þðx2 � y2Þ, and we must (i) find the
expression for this rotated potential U(x, t), and (ii) compute
rU (hopefully without having to use brute force).
The answer to (i) is simply

Uðx; tÞ ¼ U0ðR�1xÞ; (7)

where R ¼ RðxtÞ denotes a rotation through the angle xt
around the origin (counterclockwise if t> 0) and is given by
the matrix (see Fig. 3)

R ¼ RðxtÞ ¼ cosxt �sinxt

sinxt cosxt

� �

: (8)

To answer (ii), we note that there are multiple ways of
calculating rU. For example, we could write Eq. (7) in
terms of x and y and then differentiate. A more elegant
method is to write U0ðxÞ ¼ ð1=2Þðx2 � y2Þ as the dot
product

U0 xð Þ ¼ 1

2
qx; xð Þ; (9)

where q¼ diag(1, �1) is a mirror reflection in the y-axis,
and use this in Eq. (7) to get

U x; tð Þ ¼ 1

2
qR

�1x;R�1x
� �

¼ 1

2
RqR

�1x; x
� �

¼ 1

2
Sx; xð Þ; (10)

where we have used the fact that R is an orthogonal matrix.
Now for any symmetric matrix S, one hasr(Sx, x)¼ 2Sx,

as one can see from the definition of the gradient,21 and we
conclude that

rUðx; tÞ ¼ Sx: (11)

Thus, the equation of motion given by Eq. (6) turns into
Eq. (3), as claimed.
A “spinning arrows” interpretation of a rotating saddle.

Note that S(xt) is a composition of a reflection with respect
to the x-axis and a counterclockwise rotation through angle
2xt [see Fig. 4(a)]. Therefore, for a fixed x and increasing t,
the vector S(xt)x rotates counterclockwise with angular
velocity 2x; this leads to the following geometrical

Fig. 2. Prograde precession of a particle on a rotating saddle in the non-

rotating frame for large angular velocity x calculated according to Eqs. (1)

and (2). In this illustration, x¼ 20/9� 2.2 (which is not even that large). Fig. 3. Diagram providing an explanation for the rotation matrix in Eq. (7).
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interpretation of the governing equations. The force field
�S(xt)x in Eq. (3) can be thought of in the following way.
We start with the stationary saddle vector field hx;�yi, and
then rotate each arrow of this field counterclockwise with
angular velocity 2x [see Fig. 4(b)]. The result is our time-
dependent vector field �rU(x, t)¼�S(xt)x.

III. APPLICATIONS AND CONNECTIONS TO

OTHER SYSTEMS

Before getting to the point of this note, we mention that
Eqs. (1) and (2) arise in numerous applications across many
seemingly unrelated branches of classical and modern
physics.12,16,18,22 Here is a partial list: they describe the sta-
bility of a mass mounted on a non-circular, weightless rotat-
ing shaft subject to a constant axial compression force;17,23

in plasma physics they appear in the modeling of a stella-
tron—a high-current betatron with stellarator fields used for
accelerating electron beams in helical quadrupole magnetic
fields;11,12,24 in quantum optics they originate in the theory
of rotating radio-frequency ion traps;15 in celestial mechan-
ics they describe the linear stability of the triangular
Lagrange libration points L4 and L5 in the restricted circular
three-body problem;25–27 and in atomic physics the stable
Lagrange points were produced in the Schr€odinger–Lorentz
atomic electron problem by applying a circularly polarized
microwave field rotating in synchrony with an electron wave
packet in a Rydberg atom.27 This last example has led to a
first observation of a non-dispersing Bohr wave packet local-
ized near the Lagrange point while circling the atomic nu-
cleus indefinitely.28 Recently, Eqs. (1) and (2) appeared in
the study of confinement of massless Dirac particles (e.g.,
electrons in graphene).29 And, interestingly, the stability of
a rotating flow of a perfectly conducting ideal fluid in an
azimuthal magnetic field possesses a mechanical analogy
with the stability of Lagrange triangular equilibria and, con-
sequently, with the gyroscopic stabilization on a rotating
saddle.30

IV. THE RESULT: A “HODOGRAPH”

TRANSFORMATION

The main point of this note is to show that the rapid
rotation of the saddle gives rise to an unexpected Coriolis-
like or magnetic-like force in the laboratory frame; it is this
force that is responsible for prograde precession. To our
knowledge, this is the first example where a Coriolis-like
force arises in the inertial frame.

To state the result we assign to any motion x¼ x(t) satisfy-
ing Eq. (3) its “guiding center,” or “hodograph,”31

u ¼ x� e
2

4
S xtð Þ x� eJ _xð Þ; (12)

where e¼x
�1 and where J is the counterclockwise rotation

by p/2

J ¼ 0 �1

1 0

� �

: (13)

We discovered that for large x (i.e., small e), the guiding
center has a very simple dynamics

€u � e
3

4
J _u þ e

2

4
u ¼ O e

4ð Þ; (14)

that is, ignoring terms of O(e4), u behaves as a particle with
a Hookean restoring force �(e2/4)u and subject to the
Coriolis- or magnetic-like force ðe3=4ÞJ _u. Figure 5 shows a
typical trajectory of the truncated equation

€u � e
3

4
J _u þ e

2

4
u ¼ 0; (15)

which is in fact the motion of a Foucault pendulum. And just
as with a Foucault pendulum,32 the Coriolis-like term is re-
sponsible for prograde precession of u and thus of its
“follower” x.
Angular velocity of precession in Eq. (15) compared to

earlier results. The angular velocity of precession of solu-
tions of the Foucault-type Eq. (15) turns out to be xp¼ e

3/8.
Indeed, writing the equation in the frame rotating with angu-
lar velocity xp gives rise to a Coriolis term and a centrifugal
term, and the system in that frame becomes

€z þ 2xpJ _z �
e
3

4
J _z þ e

2

4
zþ x

2
pz ¼ 0: (16)

With the above value of xp, the second and the third terms
cancel, and the resulting system

€z þ e
2

4
þ e

6

64

� �

z ¼ 0 (17)

Fig. 4. (a) S is a reflection followed by a rotation. (b) Another interpretation

of the rotating saddle: rotating the potential with angular velocity x amounts

to rotating each arrow of the vector field hx;�yi with angular velocity 2x.

Fig. 5. The motion of the “guiding center,” governed by Eq. (15), is the

same as that of a Foucault pendulum. Here, e¼ 0.45.
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exhibits no precession at all (all solutions are simply ellip-
ses). We conclude that e3/8 is indeed the angular velocity of
precession of u. This simple expression fits with the earlier
results and also gives the precession speed for the near-
equilibrium motions of Brouwer’s particle, as we show next.

The equations of a rotating radio-frequency ion trap
obtained in Hasegawa and Bollinger15 reduce to our Eqs. (1)
and (2) with e ¼ x

�1 ¼ ffiffiffiffiffi

2q
p

after a re-scaling of time:
t ¼ s

ffiffiffiffiffi

2q
p

. The time t is the dimensionless time appearing in
Eqs. (1) and (2) while s and q are, respectively, the dimen-
sionless time and a dimensionless parameter of the trap in
Hasegawa and Bollinger.15 Calculating the angle of preces-
sion xpt, we find

xpt ¼
e
3

8
t ¼ e

3

8

ffiffiffiffiffi

2q
p

s ¼ 4q2

8
s ¼ q2

2
s; (18)

which yields the precession rate obtained by Hasegawa and
Bollinger15

x
HB
p ¼ q2

2
: (19)

Similarly, the dimensional precession frequency of the parti-
cle in Fig. 1 is12

Xp ¼
g2

8r2X3
: (20)

A Coriolis-like force in the inertial frame. If ðe3=4ÞJ _u
were a true Coriolis force, it would have been due to the
rotation of the reference frame with angular velocity e

3/8,
but our frame is inertial. Alternatively, one can think of
ðe3=4ÞJ _u as the Lorentz force exerted on a charged particle
(of unit mass and of unit charge) in a constant magnetic field
B¼ e

3/4 perpendicular to the plane. Rapid rotation of the
saddle gives rise to a virtual pseudo-magnetic force (cf.
Refs. 33–35). As one implication, the asteroids in the vicin-
ity of Lagrange triangular equilibria behave like charged par-
ticles in a weak magnetic field, from the inertial observer’s
point of view.

A numerical illustration. Figure 6 shows a numerical solu-
tion x alongside its “guiding center” u. We note, as a side
remark, that near the origin the solution follows the trajec-
tory of the guiding center rather closely, reflecting the fact
that oscillatory micromotion is small near the origin, as is
clear from Eqs. (1) and (2).

We discovered the hodograph transformation in Eq.
(12) via a somewhat lengthy normal form argument,5,6

and which, due to its length, will be presented elsewhere.
Nevertheless, once the transformation (12) has been pro-
duced, Eq. (14) can be verified directly by substituting Eq.
(12) into Eq. (3); we omit the routine but slightly lengthy
details, but give a geometrical view of this
transformation.

A geometrical view of the hodograph transformation. Our
result says, in effect, that the “jiggle” term

e
2

4
S xtð Þ x� eJ _xð Þ (21)

in Eq. (12), when subtracted from x, leaves a smooth
motion.36 Figure 7 gives a geometrical view of this term. It
is still an open problem to find a simple heuristic explanation

for the term �eJ _x in Eq. (12). Finding a heuristic explana-
tion of the “magnetic” term ðe3=4ÞJ _u remains an open prob-
lem as well.
Validity of the truncation. Our result says that the fictitious

particle u, which shadows the solution x, is subject to two
forces: �ðe3=4Þ _u and �(e2/4)u, plus a smaller O(e4) force.
What is the cumulative effect of this smaller force? One can
show, using standard results of perturbation theory, that
neglecting the O(e4) term leads to a deviation of less than
c1e

3 over the time jtj < c2e
�2 for some constants c1, c2, for

all e sufficiently small. As it often happens with rigorous
results, this one is overly pessimistic: computer simulations
show that “sufficiently small” is actually not that small (for
example, e¼ 0.45 in Fig. 5). In fact, the reason for such an
unexpectedly good agreement is the fact that the error on the
right-hand side of Eq. (14) is actually O(e6), two orders bet-
ter than claimed, as follows from an explicit computation by
Berry.37 We do not focus on the analysis of higher powers of
e, because it would only add higher-order corrections to the
coefficients on the left-hand side of Eq. (14), without affect-
ing our main point (namely, that an unexpected Coriolis-like
force appears).38

V. A PROPOSED EXPERIMENT

As mentioned in the introduction, a ball rolling on the
rotating saddle surface18 is not the right physical realization
of the rotating saddle trap because (i) friction is very hard to

Fig. 6. A trajectory of the guiding center u governed by Eq. (15) (thick

curve) tracking the corresponding trajectory x governed by Eq. (3) (thin

curve). The view is in the inertial frame with e¼ 0.45.

Fig. 7. A geometrical representation of the “jiggle” term SðxtÞðx� eJ _xÞ
(without the e2/4 factor) in the hodograph transformation. One should “read”

the figure in the following order: x7! _x 7! � eJ _x 7!x� eJ _x 7!Sðx� eJ _xÞ. A
geometrical interpretation of S is shown in Fig. 4(a).
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eliminate, and (ii) perhaps more importantly, because the
rolling ball does not behave as a sliding particle. In fact, the
rolling ball can be stable even on top of a sphere rotating
around its vertical diameter.20 Figure 8 illustrates a possible
mechanical implementation of the rotating saddle trap (cf.
Refs. 17 and 23). A light rod with a massive ball is essen-
tially an inverted spherical pendulum; the sharpened end of
the rod resting on the center of the platform acts as a ball
joint with the horizontal plane. Two springs are attached to
the rod,39 and the height of the ball is adjustable, like in a
metronome. If the ball is placed sufficiently low then the
springs will stabilize the pendulum in the x-direction while
the y-direction remains unstable [see Fig. 8(b) (Ref. 40)];
thus, the potential acquires a saddle shape

U0 x; yð Þ ¼
1

2
ax2 � by2
� �

; (22)

with a, b> 0, ignoring higher powers of x, y. Here, b¼ g/L,
where L is the distance from the ball to the sharpened end of
the rod. In a moment, we suggest a simple way to adjust L to
make the two curvatures equal (a¼ b) so that the linearized
equations become

€x þ bS Xtð Þx ¼ 0; b ¼ g

L
; (23)

which is a rescaled version of Eqs. (1) and (2). By rescaling
the physical time t to the dimensionless time s ¼ ffiffiffi

a
p

t, and
introducing x ¼ X=

ffiffiffi

a
p

, we transform the above equation
into the dimensionless form of Eqs. (1) and (2) (after renam-
ing s back to t), which is stable if x> 1.8,16,17

Now a¼ b¼ g/L, where L is the distance from the mass to
the ball joint, and using a¼X

2/x2 then gives us the length

L ¼ g
x

X

� �2

: (24)

The 78 rpm angular velocity of a vinyl record player corre-
sponds to X� 8.2 s�1, and the value x� 2.2 referred to in
Fig. 2 corresponds to a height L� 71 cm. How short can we
make the pendulum without losing stability? The cutoff
length is L� 14 cm, as follows from Eq. (24) and the fact
that Eqs. (1) and (2) are stable if and only if x> 1.
Incidentally, large L corresponds to large x (for fixed rpm),
which makes intuitive sense since a natural unit of time in
our system is the period 2p

ffiffiffiffiffiffiffiffi

L=g
p

of the oscillations along

the stable axis of the stationary potential. For large L this pe-
riod is long, and during one such cycle the rotating potential
will spin many times, corresponding to large x.
How to (easily) realize the saddle with equal principal

curvatures. It may seem—as it did to us initially—that one
needs to measure the stiffnesses of the springs, the various
lengths in Fig. 8, the mass of the ball, and then use these to
compute the value of L. Instead, here is a way to avoid all
this work. Referring to Fig. 9, adjust the position of the mas-
sive ball along the rod to such critical height Hc as to make
the ball neutrally stable in the x-direction: if the ball is too
high (low), it will be unstable (stable) in the x-direction; a
bisection method will quickly lead to a good approximation
to Hc. Remarkably, the desired “equal curvatures” height of
the ball is simply

L ¼ Hc

2
: (25)

An explanation. The angle y satisfies the inverted pendu-
lum equation €y � ðg=LÞ sin y ¼ 0, which for small angles is
well approximated by

€y � g

L
y ¼ 0: (26)

Similarly, the linearized equation for the angle x is

€x þ � g

L
þ k

L2

� �

x ¼ 0; (27)

L is not yet chosen, and k depends on the parameters of the
system, but not on L.41 Our goal is to find L such that the
coefficients in the above equations are equal and opposite,
which amounts to asking for L to satisfy g/L¼�g/Lþ k/L2,
or

2Lg ¼ k: (28)

We now relate the unknown k to Hc. For a pendulum of
length Hc, the angle x satisfies €x þ ð�g=Hc þ k=H2

c Þx ¼ 0,
with the coefficient ð�g=Hc þ k=H2

c Þ ¼ 0 since the equilib-
rium is neutral; this gives

k ¼ gHc: (29)

Substituting Hc¼ 2L into the last equation gives Eq. (28), pre-
cisely the condition for the equality of the coefficients in U.

Fig. 8. A possible mechanical realization of the rotating saddle trap. Here, x

and y are the angular variables of the inverted pendulum, and the graph of

the potential energy in terms of the angular variables x, y is shown.

Fig. 9. How to find the length for which the curvatures of the saddle are

equal and opposite: Uxx(0, 0)¼�Uyy(0, 0). Find, by trial and error, the

height Hc at which the x-direction changes stability; the length of interest is

then Hc/2.
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VI. CONCLUSION

The existence of Trojan asteroids in a triangular Lagrange
libration point on the orbit of Jupiter is a consequence of the

basic fact that a particle can be trapped in the rotating saddle
potential. In the case when the potential is symmetric, the
trajectory of the trapped particle in the non-rotating frame
exhibits a slow prograde precession. This somewhat mysteri-

ous precession discovered first in the context of accelerator
physics and microwave ion traps has not been explained so
far. We demonstrated that the rapid rotation of the saddle

potential creates a weak Lorentz-like (or Coriolis-like) force,
in addition to an effective stabilizing potential, all in the in-
ertial frame. With the use of a new hodograph transformation

and a method of normal form, we found a simplified equa-
tion for the guiding center of the trajectory that coincides
with the equation of the Foucault’s pendulum. In this sense,

a particle trapped in the symmetric rotating saddle trap is,
effectively, a Foucault’s pendulum, but in the inertial frame.
To demonstrate the phenomenon, we proposed a simple

experiment with the inverted pendulum mounted on a
turntable.
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