
A&A 581, A128 (2015)
DOI: 10.1051/0004-6361/201526175
c© ESO 2015

Astronomy
&

Astrophysics

Detectability of quasi-circular co-orbital planets.
Application to the radial velocity technique

Adrien Leleu1, Philippe Robutel1, and Alexandre C. M. Correia1,2

1 ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
e-mail: adrien.leleu@obspm.fr

2 CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

Received 24 March 2015 / Accepted 8 June 2015

ABSTRACT

Several celestial bodies in co-orbital configurations exist in the solar system. However, co-orbital exoplanets have not yet been dis-
covered. This lack may result from a degeneracy between the signal induced by co-orbital planets and other orbital configurations.
Here we determine a criterion for the detectability of quasi-circular co-orbital planets and develop a demodulation method to bring
out their signature from the observational data. We show that the precision required to identify a pair of co-orbital planets depends
only on the libration amplitude and on the planet’s mass ratio. We apply our method to synthetic radial velocity data, and show that for
tadpole orbits we are able to determine the inclination of the system to the line of sight. Our method is also valid for planets detected
through the transit and astrometry techniques.
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1. Introduction

Lagrange (1772) found an equilibrium configuration for the
three-body problem where the bodies are located at the vertices
of an equilateral triangle. For relatively small eccentricities, the
libration around the stable Lagrangian equilibrium points L4 and
L5 is one of the two possible configurations of a stable co-orbital
system, called a tadpole orbit (by analogy with the restricted
three-body problem, we define L4 as the equilibrium point when
the less massive planet is 60◦ ahead of the more massive one
and L5 when it is behind). The first object of this kind was ob-
served by Wolf (1906), the asteroid Achilles, which shares its
orbit with Jupiter around L4. At present, more than 6000 bodies
in tadpole orbits are known in the solar system (MPC 2014). For
objects in the second configuration, called a horseshoe orbit after
the shape the trajectories of the bodies in the corotating frame,
the libration encompasses the equilibrium points L4, L5, and L3.
A single example is known, for a pair of satellites of Saturn (see
Dermott & Murray 1981b).

The Lagrangian equilibria points are stable if the masses
of the planets are low enough. In the quasi-circular case,
Gascheau (1843) showed that there is a stability condition for
the Lagrangian equilibrium

m0m1 + m1m2 + m0m2

(m0 + m1 + m2)2 >
1

27
≈ 0.037, (1)

where m0 is the mass of the star, and m1 and m2 the mass of
the co-orbital planets. The mass repartition between the two co-
orbitals has a small impact on the stability. Within this limit,
Gascheau’s criterion guarantees the stability of the linearized
equations in the vicinity of L4 or L5. The lower the masses of the
co-orbitals with respect to the total mass, the larger is the pos-
sible libration amplitude. The horseshoe domain is stable when
the planets have a Saturn-mass or less (Laughlin & Chambers
2002).

For eccentric orbits, the range of stable mass ratios between
the co-orbital and the central body decreases as the eccentricity
increases (Roberts 2000; Nauenberg 2002). Moreover, an addi-
tional co-orbital configuration exists in the eccentric case, called
quasi-satellite, as the co-orbitals seem to gravitate around each
other in the rotating frame. For high eccentricities, co-orbitals
have a much larger stable domain for quasi-satellites than for
tadpole or horseshoe configurations (Giuppone et al. 2010).

Since the discovery of the first exoplanets (Wolszczan &
Frail 1992), a great diversity of systems has been found, some
of them in mean motion resonances (MMR). A few of these res-
onant systems are highly populated (like the 2/1 MMR), but so
far no system has been identified in a co-orbital configuration
(1/1 MMR). However, many theoretical works suggest that co-
orbital exoplanets may also exist. Laughlin & Chambers (2002)
introduced two possible processes that form these systems: (i)
planet-planet gravitational scattering and (ii) accretion in situ at
the L4-L5 points of a primary.

The assumptions made on the gas disc density profile in sce-
nario (i) can either lead to systems with a high diversity of mass
ratio (Cresswell & Nelson 2008) or to equal mass co-orbitals
when a density jump is present (Giuppone et al. 2012). In their
model, Cresswell & Nelson (2008) form co-orbitals in over 30%
of the runs. Initially in horseshoe configurations, the co-orbital
systems are generally damped into tadpole configurations. The
co-orbitals formed by this process usually have very low incli-
nations and eccentricities (e < 0.02).

Lyra et al. (2009) showed that in scenario (ii), up to
5−20 Earth-mass planets may form in the tadpole of a Jupiter-
mass primary. For existing co-orbitals, the gas accretion seems
to increase the mass difference between co-orbitals, the more
massive of the two reaching Jovian mass while the starving one
stays below 70 M⊕ (Cresswell & Nelson 2009).

Models that produce co-orbital planets due to dissipation
within a disc may also experience significant inward migration.
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Such migration increases the libration amplitude of trojan plan-
ets for late migrating stages with low gas friction. This may lead
to instability, but the damping of the disc usually forces the libra-
tion to remain small. Equal mass co-orbitals (from super-Earths
to Saturns) are heavily disturbed during large scale orbital mi-
gration (Pierens & Raymond 2014). In some cases, Rodríguez
et al. (2013) have shown as well that long-lasting tidal evolution
may perturb equal mass close-in systems. Overall, significantly
different mass trojans may thus be more common, especially in
close-in configurations.

Co-orbital planets can also be disturbed in the presence of
additional planetary companions, in particular by a significantly
massive planet in another MMR with the co-orbitals (Morbidelli
et al. 2005; Robutel & Bodossian 2009). Moreover, horseshoe
orbits are more easily disturbed than tadpole orbits owing to the
higher variation of frequencies in the system with respect to the
libration amplitude (Robutel & Pousse 2013).

Detecting co-orbital planets is not an easy task because the
signatures of each body are usually superimposed. The transit
method can solve this degeneracy, either by observing both co-
orbitals transiting (Janson 2013), or when only one co-orbital is
transiting by coupling with another detection method (Ford &
Gaudi 2006). When the libration amplitude is large enough, the
transit timing variation (TTV) method can also find co-orbital
candidates even when only one body is transiting (Janson 2013;
Vokrouhlický & Nesvorný 2014).

If the bodies are exactly at the Lagrangian equilibrium point
(with no libration), the radial velocity (RV) signal is the same
as for a single planet, overestimating the mass of the system
by ≈13% (Dobrovolskis 2013). Laughlin & Chambers (2002)
showed that the libration of co-orbitals modulates the RV sig-
nal from the star, allowing them to determine a co-orbital sys-
tem from a simulated RV signal. Cresswell & Nelson (2009)
estimated that for the co-orbitals obtained in their simulation,
this modulation is 10−20% of the total amplitude of the signal.
Giuppone et al. (2012) showed that a short-term RV signal (du-
ration inferior to the period of libration) did not allow co-orbitals
to be distinguished from an eccentric planet or from two planets
in 2/1 MMR (Goździewski & Konacki 2006; Anglada-Escudé
et al. 2010).

Theoretical and numerical studies seem to agree that tad-
pole and horseshoe co-orbitals tend to have low eccentricities
and mutual inclinations. In addition, in the solar system we ob-
serve among the moons of Saturn (Dermott & Murray 1981b,
and references therein) three co-orbital systems, all with incli-
nations <1◦ and eccentricities <0.01. Jupiter’s trojans have a
mean inclination of about ≈12◦ and eccentricities bellow 0.3. We
thus conclude that quasi-circular orbits are a good approxima-
tion for many co-orbital systems. As the study of quasi-circular
and coplanar orbits is easier than the full case, in this paper we
restrict our analysis to this simpler situation. We first give a brief
overview of the co-orbital dynamics and an analytical approxi-
mation of the co-orbital motion valid for small eccentricities. In
Sect. 3 we derive an analytical method that can be used to extract
the signature of co-orbitals from the motion of the host star. In
Sect. 4 we exemplify our method with the radial velocity tech-
nique using synthetic data, and we conclude in the last section.

2. Co-orbital dynamics

We denote m0 the mass of the central star, and m1 and m2 the
masses of the co-orbital planets. Adapting the theory developed
by Érdi (1977) for the restricted three-body problem to the case

Fig. 1. Reference angles represented for the circular co-orbital system
with respect to an inertial frame (x, y). m0 is the mass of the central star,
m1 and m2 the masses of the co-orbitals. ri is the distance of the co-
orbital i to the central star, and λi its true longitude. Following Eq. (3)
one can write λi as a function of λ0, ζ, and of the mass ratio δ.

of three massive bodies, and neglecting the quantities of second
order and more in

µ =
m1 + m2

m0 + m1 + m2
, (2)

the mean longitudes λi and the semi-major axes ai of the co-
orbitals can be approximated by the expressions (see Robutel
et al. 2011)

λ1(t) ≈ nt + δζ(t) + λ0, λ2(t) ≈ nt − (1 − δ)ζ(t) + λ0,

a1(t) ≈ a
(
1 − δ 2

3
ζ̇(t)
n

)
, a2(t) ≈ a

(
1 + (1 − δ) 2

3
ζ̇(t)
n

)
,

(3)

where n is the averaged mean motion of the barycentre of m1 and
m2, λ0 is a constant equal to the initial value of the barycentre of
the longitudes (λ1m1 + λ2m2)/(m1 + m2), and

δ =
m2

m1 + m2
· (4)

At first order in µ, we have the constant quantity a = (1 − δ)a1 +
δa2, which can be seen as the mean semi-major axis, and is
linked to n by Kepler’s third law n2a3 = G(m0 + m1 + m2), where
G is the gravitational constant. Finally, the variable ζ = λ1 − λ2
satisfies the second-order differential equation

ζ̈ = −3µn2
[
1 − (2 − 2 cos ζ)−3/2

]
sin ζ, (5)

which is one of the most common representations of the co-
orbital motion (see Morais 1999, and references therein). For
small eccentricities, it describes the relative motion of the two
bodies and is valid as long as the co-orbital bodies are not too
close to the collision (ζ = 0).

Equation (5) is invariant under the symmetry ζ 7−→ 2π − ζ,
so the study of its phase portrait can be reduced to the domain
(ζ, ζ̇) ∈ [0, π] × R (see Fig. 2) (this symmetry will be developed
later on). The equilibrium point located at (ζ, ζ̇) = (π/3, 0) corre-
sponds to one of the two Lagrangian equilateral configurations1,
which are linearly stable for sufficiently small planetary masses
(see below). Another equilibrium point, whose coordinates are

1 The coordinates of the other equilateral point are (5π/3, 0). The per-
mutation of the index 1 and 2 of the planets allows the two equilateral
configurations to be exchanged.
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Fig. 2. Phase portrait of Eq. (5). The separatrix (black curve) splits the
phase space in two different domains: inside the separatrix the region
associated with the tadpole orbits (in red) and the horseshoe domain
(blue orbits) outside. The phase portrait is symmetric with respect to
ζ = 180◦. The horizontal purple segment indicates the range of variation
of ζ0 while the vertical one shows the section used as initial condition
to draw Fig. 5. See the text for more details.

(π, 0), corresponds to the unstable Eulerian collinear configura-
tion of the type L3. The separatrices emanating from this last
unstable point split the phase space in three different regions:
two corresponding to the tadpole trajectories surrounding one
of the two Lagrangian equilibria (in red in Fig. 2), and another
one corresponding to the horseshoe orbits that surround the three
above-mentioned fixed points (in blue in Fig. 2).

As shown in Fig. 2, any trajectory given by a solution of
Eq. (5) can be entirely determined by the initial conditions
(t0, ζ0) such that ζ(t0) = ζ0 and ζ̇(t0) = 0, where ζ0 is the min-
imum value of ζ along the trajectory, and t0 the first positive
instant for which the value ζ0 is reached.

The possible values of ζ0, represented by the purple horizon-
tal line in Fig. 2, are included in the interval ]0◦, 60◦]; ζ0 = 60◦
corresponds to the equilateral configuration where m1 is the lead-
ing body and m2 is the trailing one2. The tadpole orbits are as-
sociated with ζ0 ∈]ζs, 60◦[, ζs ≈ 23.9◦ being associated with the
separatrix, while ζ0 ranges from ζs to 0 for horseshoe orbits. As a
result, the shape of the trajectory of the relative motion (as the li-
bration amplitude of the resonant angle ζ) is entirely determined
by the quantity ζ0.

In contrast, t0 and n
√
µ are necessary to know the exact po-

sition on the trajectory, and in particular, the amplitude of the
variations of the semi-major axes. We can rewrite Eq. (5) by
rescaling the time with τ =

√
µnt,

d2ζ̃

dτ2 = −3
[
1 − (2 − 2 cos ζ̃)−3/2

]
sin ζ̃ , (6)

where ζ̃(τ) = ζ(t). As a consequence, this differential equation
does not depend on n

√
µ. Its solutions are solely determined by

the initial conditions τ0 =
√
µnt0 and ζ̃(τ0) = ζ̃0 ≡ ζ0.

In a small vicinity of the Lagrangian equilibria, the frequen-
cies of the motion are close to

ν0 = n

√
27
4
µ. (7)

2 The permutation of these two bodies exchanges the two equilateral
configurations, which are located at ζ = π/3 and ζ = 5π/3, respectively.

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60

ν~

ζ0

Fig. 3. Variation of the libration frequency ν̃ versus ζ0 = ζ̃0. The fre-
quency is taken over the purple horizontal line in Fig. 2. Inside the
tadpole region, the libration frequency decreases from

√
27/4 at L4

(ζ0 = 60◦) to 0 on the separatrix (ζ0 = ζs ≈ 23.9◦). In the horseshoe
domain (ζ0 < ζs) the frequency increases from 0 on the separatrix to
infinity when the two planets get closer because the approximations
leading to Eq. (5) are not valid close to the collision (see Robutel &
Pousse 2013).

More generally, excluding the separatrix, the solutions of Eq. (5)
(respectively (6)) are periodic. The associated frequency, de-
noted by ν (respectively ν̃), depends on the considered trajec-
tory. However, the time-normalized frequency associated with
Eq. (6),

ν̃ = ν/(n
√
µ), (8)

depends only on ζ0 (ν̃ is plotted versus ζ0 in Fig. 3). In tad-
pole configurations, this dimensionless frequency remains al-
most constant in the vicinity of the Lagrangian equilibrium
ν ≈ ν0 (Eq. (7)) and tends to 0 as the separatrix is reached at
ζ0 = ζs. In horseshoe configurations, ν can take any value. In
Fig. 3, one can see that far from the separatrix, ν̃ is always of
order unity. This imposes that the variations of the difference of
the longitudes, ζ, are slow with respect to the orbital time scale,
i.e. ν � n. It turns out that ζ̇(t)/n � 1 and as a consequence,
the quantities a j can be approximated by a (Eq. (3)). Thus, in the
circular planar case, at order 0 in ν, the position of m1 and m2 in
the heliocentric system r = (x + iy) are given by

r1 = aeiδζei(nt+λ0), and r2 = ae−i(1−δ)ζei(nt+λ0). (9)

Within the same approximation, we can also write the derivative
of previous equation, which gives us the heliocentric velocity of
the co-orbitals

ṙ1 = inaeiδζei(nt+λ0), and ṙ2 = inae−i(1−δ)ζei(nt+λ0). (10)

While searching for co-orbital bodies, the stability of each con-
figuration also needs to be taken into account. In order to deter-
mine the influence of the planetary masses on the global stability
of planar co-orbital systems, we show the results of two numer-
ical simulations indicating the width of the stable co-orbital re-
gion in different directions. In Fig. 4, we consider two planets
orbiting around a star of mass m0 = 1 M�, with fixed initial el-
ements a1 = a2 = 1 au, e1 = e2 = 0.05, and λ1 = $1 = 0, and
we vary the initial element λ2 = $2 = −ζ0 in [0◦, 60◦] and their
masses m1 = m2 = µm0/2, with µ/2 ∈ [10−8, 10−1]. For each set
of initial conditions, the system is integrated over 5 Myr using
the symplectic integrator SABA4 (Laskar & Robutel 2001) with
a time-step of 0.0101 year.

Strongly chaotic systems or systems that quit the co-orbital
resonance before the integration stops are removed from the
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Fig. 4. Stability of co-orbitals as a function of log10(µ) and ζ0. The
initial conditions are chosen as t0 = 0 (∆a/a = 0) and ζ0 ∈ [0◦, 60◦]:
purple horizontal line in Fig. 2. In black is the separatrix between the
tadpole and the horseshoe domain. The stability criteria of Gascheau
(1843), corresponding to ν/n = 1/

√
2, has been indicated. We also show

the vicinity of two of the main resonances between ν and n: the 1/2
resonance (see Roberts 2000) and the 1/3. The colour code indicates
the value of the libration frequency, i.e. log10(ν/n).

computation. In this case, in Fig. 4 white dots are assigned to
their initial parameters (ζ0, µ). This strong short-term instability
is mainly due to the overlapping of low-order secondary reso-
nances (Páez & Efthymiopoulos 2015). After the elimination of
these initial conditions, long-term diffusion along secondary res-
onances may also destabilize the co-orbital systems on a much
longer time scale. Measuring the temporal variation of the li-
bration frequency identifies this diffusion (Laskar 1990, 1999).
The black dots indicate a relative variation of over 10−6 between
the first and second half of the 5 million years integration (to
compare with ≈10−10 for the long-term stable configurations).
They are mainly located in the vicinity of the separatrix and near
the ejection boundary. In the remaining regions, the small vari-
ation of the frequency ν guarantees, in most cases, the stability
for a billion years (Robutel & Gabern 2006). For long-term sta-
ble systems, a colour depending on its libration frequency ν is
assigned to regular resonant co-orbital systems (see the colour
code at the bottom of Fig. 4). We observe that for large planetary
masses, slightly lower than the limit value µ ≈ 0.037 (Gascheau
1843), the stability region is extremely small and strongly per-
turbed by low-order secondary resonances. The chaos generated
by the main secondary resonances, namely the ν = n/2, ν = n/3,
and ν = n/4, shrink the stability region significantly, reducing it
to a small region near the equilateral configuration (see Roberts
2002; Nauenberg 2002). As µ decreases, the width of the sta-
ble tadpole region increases, and the destabilizing influence of
the secondary resonances becomes dominant only on the bound-
ary of the stability region (see Páez & Efthymiopoulos 2015;
Robutel & Gabern 2006; Érdi et al. 2007, for the restricted prob-
lem). When µ ≈ 3 × 10−4 ≈ 2MSaturn/M�, the whole tadpole
domain becomes stable, except for a small region around the
separatrix (ζ0 = ζs ≈ 23.9◦). On the other side of the separatrix,
for ζ0 < ζs, stable horseshoe orbits start to appear (see Laughlin
& Chambers 2002). For lower planetary masses, the size of the
horseshoe orbital domain increases as µ decreases, to reach the
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Fig. 5. Stability of co-orbitals as a function of log10(µ) and ∆a/a. The
initial conditions are ζ0 = π/3 and ∆a/a ∈ [0, 0.06]: vertical purple line
in Fig. 2. The black line indicates the separatrix between the tadpole and
the horseshoe domains. The dots follow a curve ∆a ∝ µ1/3, delimiting
the stability region of the horseshoe domain. The colour code indicates
the value of the libration frequency, i.e. log10(ν/n) (see Fig. 4 for the
scale).

outer boundary of the Hill sphere at a distance to the separatrix
of the order of µ1/3 (see Robutel & Pousse 2013).

In Fig. 5 we show another section of the co-orbital region.
Instead of varying the angle ζ0, we change the initial value of
the difference of the semi-major axes from the equilateral equi-
librium L4 towards the outside of the co-orbital region (vertical
purple line in Fig. 2). More precisely, the initial conditions of the
planetary systems are e1 = e2 = 0.05, λ1 = $1 = 0, λ2 = $2 =
π/3, and a j = 1 − (−1) j∆a with ∆a ∈ [0 : 0.06]. As they do in
figure 4, the planetary masses vary as m1 = m2 = µm0/2, with
µ/2 ∈ [10−8, 10−1].

The tadpole domaine lies above the solid black line corre-
sponding to the equation ∆a = 2

√
2/
√

3
√
µ (Robutel & Pousse

2013). In this case, contrarily to the ζ0 direction where the
width of the stable tadpole region is a monotonous function
of µ, the extent of the stability region reaches a maximum for
∆a/a ≈ 0.052 at µ = 3.5 × 10−3 and then tends to zero with
µ as indicated by the above-mentioned curve. For lower val-
ues of µ, the size of this region decreases until µ reaches the
value for which horseshoe orbits begins to be stable. After these
critical masses, the two domains shrink together but at a differ-
ent rate. The asymptotical estimates of the tadpole’s width in
this direction is of the order of µ1/2 (black solid line in Fig. 5),
while an estimation for the horseshoe region is of the order of
µ1/3 (black dashed line in Fig. 5, corresponding to the equation
∆a = 0.47µ1/3) has been fitted to the lower bound of the sta-
ble horseshoe region (see Robutel & Pousse 2013, for more de-
tails). As a consequence, the stability domain of the horseshoe
configurations becomes larger than the tadpole domain when the
planetary masses tend to zero (Dermott & Murray 1981a).

3. One planet or two co-orbitals?

In some particular situations, co-orbital planets can be identified
independently from the orbital libration: when both planets are
transiting (Janson 2013) or when we combine data from transits
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Fig. 6. Motion of the two co-orbital bodies (red and blue) and their
barycentre (purple) in a co-rotating frame with frequency n. Tadpole
(left) and horseshoe (right). δ = 0.6. Here µ = 2 × 10−4 and the planets
are located at 1 AU from the star. By eliminating the influence of n, one
can see the long-term motion of the barycentre of the planets. Pν is the
period of the periodic trajectories represented by the coloured lines. See
the text for more details.

with radial velocities (Ford & Gaudi 2006). However, in general
the detection of co-orbitals requires identifying the effect of the
libration in the data. Vokrouhlický & Nesvorný (2014) showed
that the TTV of only one of the co-orbital planets is enough if the
libration is large. Laughlin & Chambers (2002) showed that the
libration induced by co-orbital can have an important effect on
the radial velocity of a star, while Giuppone et al. (2012) showed
that co-orbitals can be mistaken for a single planet if the data
span is short with respect to the libration period.

In the previous section we saw that co-orbital planets can be
stable for large libration amplitudes, depending on the parame-
ter µ (see Figs. 2 and 4). However, the libration period is always
longer than the orbital period of the bodies (see the colour code
in Fig. 4). The faster ζ librates, the higher the chances of de-
tecting the co-orbital bodies, because this reduces the time span
needed to detect the libration. We write Pν the period associated
to the libration frequency ν. The value of Pν decreases when µ
and n increase (see Eq. (7) and Fig. 3). Therefore, high mass ra-
tios and the proximity to the star maximize the detectability of
co-orbitals, although high mass ratios also lead to the instability
of most of the co-orbital configurations (Fig. 4). Hereafter we
consider that the time span of the observations is always longer
than Pν.

3.1. Signals induced by co-orbital planets

Most important observational techniques used to detect exoplan-
ets (transits, radial-velocity, astrometry) are indirect, i.e. we do
not directly observe the planets, but rather their effect on the
host star. In order to get an idea of the effect of the libration of
co-orbital planets on the star, we take two examples of co-orbital
configurations (see Fig. 6) with the following initial conditions:
λ1 = 0◦, a1 = a2 = 1 AU, e1 = e2 = 0, m1 = 0.8×10−4 M� (red),
and m2 = 1.2× 10−4 M� (blue). In the left graph, ζ0 = 25◦, lead-
ing to a large amplitude tadpole orbit, and in the right graph,
ζ0 = 23◦, leading to a horseshoe orbit. The position of the
barycentre of the system composed of the two planets is rep-
resented in purple. With µ = 2 × 10−4 and ζ0 near the separatrix,
these two examples are at the limit of the stability domain, but
give a clear idea of what we can expect.

In Fig. 7 we show the projection of the stellar orbit on the
x-axis for these two configurations. We observe that the signal
induced by the Keplerian motion of the co-orbitals is indeed
modulated over a period of libration of the resonant angle ζ. This
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Fig. 7. Motion of the star in the configurations of Fig. 6 in the direc-
tion x in the inertial frame. In black is the tadpole orbit and in red the
horseshoe. The top graph represents the evolution of the position of the
star over time and the bottom graph its spectrum. In these examples,
the libration period of the horseshoe orbits is about twice the period of
the tadpole orbits. See the text for more details.

phenomenon was described by Laughlin & Chambers (2002) in
the case of a radial velocity signal. It is due to the oscillation,
with a frequency ν, of the distance between the barycentre of the
two planets and the star, clearly visible in Fig. 6. The larger the
amplitude of variation of ζ, the larger the amplitude of modula-
tion. For a given ζ0 value, the maximum oscillation amplitude is
achieved when δ = 1/2, that is, for m1 = m2. In the horseshoe
configuration, δ = 1/2 leads the barycentre of m1 and m2 to pass
by the position of m0, periodically cancelling the signal.

The bottom panel of Fig. 7 shows the spectrum of those sig-
nals. The features of the spectrum of a modulated signal appear
clearly: one peak located at the high frequency n and harmon-
ics located on both sides n + pν, where p is an integer and ν is
the frequency of the modulation. In general, the peaks located
in n and n ± ν are the ones with the largest amplitude. However,
there is an exception when the signal is at the limit of the over-
modulation, that is, when the peak located in n disappears. This
can happen only in the horseshoe configuration when m1 ≈ m2.
In this case, the main components of the spectrum would be two
peaks separated by 2ν and the system would then be easier to
identify. In this paper we focus on the possibility of detecting
the main three peaks.

3.2. Motion of a star hosting co-orbital planets

If the centre of mass of the system is at rest, the position of a
star hosting two co-orbital planets is given by (in barycentric
coordinates)

r0 = µ[(1 − δ)r1 + δr2], (11)

where r1 and r2 are given by Eqs. (9). Since ζ(t) is a peri-
odic function with frequency ν, we can expand the terms eiδζ

in Fourier series as

eiδζ =
∑
p ∈Z

cp(δ, ζ0, t0)eipνt, (12)
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where cp(δ, ζ0, t0) is a complex coefficient. Replacing Eqs. (9)
and (12) into Eq. (11), we get

r0 = µa
∑
p ∈Z

|Cp|ei(pνt+nt+λ0+ϕp), (13)

with

Cp = (1 − δ) cp(δ, ζ0, t0) + δ cp(δ − 1, ζ0, t0), (14)

and

ϕp = arg(Cp). (15)

For the velocity, we thus have (at order 0 in ν)

ṙ0 = iµan
∑
p ∈Z

|Cp|ei(pνt+nt+λ0+ϕp). (16)

For instance, if the observational data is acquired through as-
trometry, we get the projection of Eq. (13) on the plane of the
sky, while for radial velocities we use the projection of Eq. (16)
in the line of sight.

The stellar motion can be expressed as the sum of a signal
of frequency n, which we call the “Keplerian component”, and
other signals of frequency n + pν, which we call the “modulat-
ing components”. For simplicity, we consider only the two main
modulation components p = ±1, which are the ones with the
largest amplitude, hence the ones that are easier to detect. We
thus introduce the quantity S (t), which represents a projection
of r0 (Eq. (11)) or ṙ0 (Eq. (16)) over an observable direction,
restricted to its main two components,

S (t) = K(t) + M(t), (17)

where

K(t) = S̄ + S 0 cos(nt + φ0), (18)

and

M(t) = S 1 cos((n + ν)t + φ1) + S −1 cos((n − ν)t + φ−1), (19)

where φ0, φ1, and φ−1 depend on ϕ−1,0,1, λ0, and the direction
of the projection. Our purpose is to check if the Keplerian sig-
nal that we have detected is modulated, and if our data can be
approximated by a signal under the form S (t).

3.3. Demodulation

We assume that the Keplerian part of the signal is well deter-
mined (S 0 and S̄ terms in Eq. (18)), otherwise it would be im-
possible to look for something else. However, the modulating
signal (S 1 and S −1) can be hidden in the noise. In order to iso-
late the effect of the modulation, we suggest using a frequency
mixing method similar to the one used in the demodulation of
radio signals. This method is called “superheterodyne” and was
introduced by Armstrong (1914). It consists in multiplying the
modulated signal by a signal that has the same frequency as the
carrier. As a result, we obtain a peak at the modulating signal’s
period in the spectrum. We propose using this method on data
from co-orbital systems, but it can also be used on any other
modulated signal produced by a different source (e.g. Morais &
Correia 2008).

We consider a set of N observational data measurements. We
denote tk the time of each observation and sk the correspond-
ing observed measurement. First, we fit the data with a simple

sinusoidal function that contains only the Keplerian part K(t)
(Eq. (18)). This provides us with an initial approximation for S̄ ,
S 0, n, and φ0. Then, we perform a transformation on the raw data
sk to subtract the Keplerian part,

s′k = sk − K(tk), (20)

and then, to isolate the modulation frequency,

s̃k = s′k cos (ntk + φ), (21)

where φ is an arbitrary phase angle. This modified data set can
be fitted with a similarly modified function

S̃ (t) = [S (t) − K(t)] cos(nt + φ) = M(t) cos(nt + φ)

=
S 1

2
cos((2n + ν)t + φ1 + φ)

+
S −1

2
cos((2n − ν)t + φ−1 + φ)

+Ŝ 1 cos(νt + ∆φ) + ∆S cos(νt + φ − φ−1), (22)

where

Ŝ 1 = S 1 cos (φ̄ − φ), ∆S =
S −1 − S 1

2
, (23)

φ̄ =
φ−1 + φ1

2
, ∆φ =

φ−1 − φ1

2
· (24)

The libration frequency ν is now clearly separated from the
Keplerian frequency n. As we will see in the following sections,
we have ∆S � S 1. The libration contribution can therefore be
fitted by the term in Ŝ 1, and the signal is maximized if we are
able to choose φ = φ̄. However, φ̄ is a priori unknown, so we
propose computing the s̃k for two values of φ dephased by π/2,
for example φ = φ0 and φ = φ0 + π/2. By proceeding in this
way, in the worst case we get φ̄ − φ = π/4, corresponding to a
minimum amplitude of S 1/

√
2. Moreover, by taking the ratio of

the fitted amplitudes with the two φ values, we can additionally
estimate φ̄, and thus φ±1 = φ̄ ∓ ∆φ.

The initial determination of n using Eq. (18) always has an
error εn, which leads to the splitting of the libration term in ν into
two terms in ν ± εn. Since these two frequencies are very close
to each other, the Fast Fourier Transform (FFT) usually shows
a widened peak around ν, preventing an optimal determination
of ν, S 1, and ∆φ. Therefore, once we have some estimations for
these parameters, in the last step of the demodulation process,
we return to the original data set sk, and directly fit it with the
full equation S (t) (Eq. (17)), using the previously determined S̄ ,
S 0, S 1, S −1 = S 1, n, ν, φ0, φ1, and φ−1 as initial values for the
fit.

4. Detection using the radial-velocity technique

In this section we apply the general method described previ-
ously to the case where the data is acquired thorough the radial-
velocity technique. In this case, the data corresponds to the pro-
jection of Eq. (16) in the line of sight, given by an arbitrary di-
rection eiθ sin I in the space (Murray & Correia 2011)

vr(t) = ṙ0 · eiθ sin I = α
∑
p ∈Z

|Cp| cos(pνt + nt + φp), (25)

where

α = µan sin I, and φp = ϕp + π/2 − θ + λ0. (26)
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We note that Eq. (25) could also be the projection of Eq. (13)
over a direction in the plane of the sky (for example in the case
of an astrometric measurement). Within our approximation that
would only change the value of the parameter α. However, most
of our results on the detectability do not depend on this param-
eter, thus hold true for any measurement technique. For rea-
sons of clarity, we return to the example of the radial velocity
measurements.

Considering only the first harmonics of Eq. (25), one can
identify the RV signal to the Eq. (17), which is

vr(t) = S̄ + S 0 cos(nt + φ0) + S −1 cos((n − ν)t + φ−1)
+S 1 cos((n + ν)t + φ1), (27)

with S p = α|Cp|. We can therefore apply the demodulation pro-
cess from Sect. 3.3 to extract the orbital information from the
observational data. Our aim now is to determine which config-
urations can be detected for a given precision in the RV obser-
vations, and explain how to retrieve the orbital parameters from
the S p and φp parameters.

4.1. Detectability

We introduce the following quantity

Am =
S 1 + S −1

2S 0
=
|C1| + |C−1|

2|C0|
, (28)

which represents the power of the modulation terms with respect
to the Keplerian term. When we search for co-orbital planets, the
product S 0Am must be distinguishable from the noise.

4.1.1. Detection near the Lagrangian equilibrium

We consider a system in a tadpole configuration with a low libra-
tion amplitude. In this case we can use a linear approximation for
ζ near the Lagrangian equilibrium. Within this approximation,
we can obtain an explicit expression for vr(t) in terms of the or-
bital parameters. We introduce the small parameter z = ζ0 − π/3
and write

ζ(t) =
π

3
+ z cos (ν(t − t0)). (29)

At first order in z and using Eq. (10), the derivative of Eq. (11)
becomes

ṙ0 = −iµan
[
(1 − δ)

(
1 + iδz cos (ν(t − t0))

)
+δ

(
1 + i(1 − δ)z cos (ν(t − t0))

)
e−i π3

]
ei(nt+λ0+δ π3 ). (30)

Following Eq. (25), we project Eq. (30) in the line of sight, and
identify the terms appearing in Eq. (27) as

S 0 = α
√

1 − δ(1 − δ), (31)

S 1 = S −1 = α

√
3δ(1 − δ)

2
z, (32)

which allow us to compute Am as well:

Am =

√
3

2
δ(1 − δ)

√
1 − δ(1 − δ)

z. (33)

When m0 � m2 ≥ m1 the modulation terms can be simplified as

S 1 = S −1 ≈

√
3

2
β

m0
zan sin I, (34)

where β = m1m2/(m1 + m2) is the reduced mass of the planets’
subsystem. We thus see that the power in these terms is propor-
tional to β and to the angular separation from the Lagrangian
equilibrium z. The detection is therefore maximized for large li-
bration amplitudes and planets with large similar masses (m1 ≈

m2). Nevertheless, we note that for planetary systems with mass
ratios very different from one, for instance, m1/m2 � 1, the re-
duced mass converges to the mass of the smaller planet (β =
m1 in this case), while for equal mass planets it converges to
β = m1/2. As a consequence, although planets with large equal
masses are easier to detect than planets with small equal masses,
a small mass planet is two times easier to detect if it is accom-
panied by a large mass planet rather than another small similar
mass planet.

4.1.2. Detection in any tadpole or horseshoe configuration

For large libration amplitudes, we cannot have an explicit
expression for S p with respect to the orbital parameters.
Nevertheless, similarly to the linear case, we can prove that Am
and |C0| depend only on ζ0 and δ. Indeed, since cp are Fourier
coefficients of the expression of eiδζ , see Eq. (12), we can write

cp(δ, ζ0, t0) =
ν

2π

∫ π/ν

−π/ν

eiδζ(t−t0)e−ipνtdt, (35)

or, in terms of τ (see Sect. 2),

cp(δ, ζ0, t0) =
ν̃

2π

∫ π/ν̃

−π/ν̃

eiδζ̃(τ−τ0)e−ipν̃τdτ, (36)

where τ0 = t0/(n
√
µ). Since ν̃ depends only on ζ0, it turns out

that

cp(δ, ζ0, t0) = cp(δ, ζ0, 0)e−ipν̃τ0 = cp(δ, ζ0, 0)e−ipνt0 . (37)

As a result, the dependence of cp on τ0 is explicit. Using the defi-
nition of Cp given by Eq. (14), we see that |Cp|, and consequently
Am, do not depend on t0.

The dependence of Am and |C0| on the parameters (δ, ζ0)
is shown in Figs. 9 and 10 for tadpole configurations and in
Fig. 11 for horseshoe configurations. These figures were ob-
tained by integrating the differential Eq. (5) satisfied by ζ, with
initial conditions (ζ(0), ζ̇(0)) = (ζ0, 0). The outputs of these inte-
grations were then replaced into the expression of ṙ0 for a given
set of δ (Eq. (10)). For each simulation, the spectrum of a pro-
jection of ṙ0 has been computed in order to get the value of
the displayed quantities. These quantities have also been com-
puted from three-body direct integrations, which give the same
results.

The RV signal that we obtain for the general cases follows
the trends of the linear approach. For given values of a, µ, and
δ, the detectability of a co-orbital system increases as the ampli-
tude of the libration of ζ increases, i.e. when ζ0 decreases. This
is still true when ζ0 crosses the separatrix. When δ tends to 1
or 0, the modulation peak disappears and the signal is similar to
the one induced by a single planet. For a given ζ0, Am reaches
its maximum when δ = 1/2. In the horseshoe case, the modu-
lating terms have higher amplitudes than the Keplerian term for
0.35 . δ . 0.65, the Keplerian term being cancelled when δ
tends to 1/2.

We showed at the end of the previous section that a planet
of mass m1 (fixed) will be easier to detect if its co-orbital com-
panion is significantly more massive (m2 � m1), rather than
m2 ≈ m1. This holds true in the horseshoe domain, as shown in
Appendix A.2.
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Fig. 8. Detectability of a co-orbital companion for m2/m0 ≈ 10−3. For a
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only be detected if they lie above the respective threshold limit.

4.1.3. Detectability for a given data set

While searching for co-orbital companions of an already de-
tected planet, it is possible to put some constraints on what we
can expect to observe, based on the observational limitations. In
addition to the main Keplerian signal, characterized by K0 and
Pn, we also know the time span of the observations, T , and the
precision of the instrument, ε.

The modulation signal of a co-orbital configuration is de-
tectable if AmK0 > ε (Eq. (28)). Thus, the detection of a co-
orbital companion can only occur for

1
Am

<
K0

ε
· (38)

We also know that the libration period Pν is proportional to the
orbital period Pn (Eq. (8), Fig. 3). One complete libration period
can only be contained in the data when Pν > T , therefore

Pν

Pn
>

T
Pn
· (39)

The parameter Am depends on δ and ζ0, while the ratio Pν/Pn
depends on ζ0 and µ. The detectability of a co-orbital configu-
ration therefore depends on the mass of both planets and on the
libration amplitude.

In Fig. 8 we show the ratio K0/ε as a function of the ratio
T/Pν, which correspond to the observable quantities. We denote
m2 the most massive of the two planets (which is the main con-
tributor to K0 and µ), and m1 the mass of the less massive planet
that we are looking for. We fix m2/m0 = 10−3 (which is near the
maximum value allowed for the stability of co-orbital systems)
and show the detection limits for three different values of m1.
Co-orbital companions below each threshold limit can be ruled
out.

These detection limits are constrained by the observational
limitations (ε and T ), but also by the stability of the co-orbital
systems, which is parametrized by the values of ζ0. As ζ0 → π/3
(Lagrange point, with no libration amplitude) or m1/m2 → 0, we
have that K0/ε > 1/Am → ∞. On the other hand, as ζ0 → 0, the
chances of detection increase (the libration amplitude increases),
but the system also tends to become unstable (Fig. 4).

4.2. Characterization of the co-orbital system

The orbits of the co-orbital planets are fully characterized by the
quantities n, ν, a, ζ0, λ0, t0, and sin I. In addition, assuming that
the mass of the star is known, we can determine the mass of the
planets through µ and δ. The frequencies n and ν are directly
obtained when we fit the data with our model (Eq. (27)), while a
is obtained by the third Kepler law from n. Since ν̃ depends only
on ζ0 (Fig. 3), for each configuration there is a bijective map that
links µ and ζ0 given by

√
µ =

ν

ν̃(ζ0)n
, (40)

where ν̃ is defined by Eq. (8). We are thus left with five param-
eters, ζ0 (or µ), δ, λ0, t0, and sin I, that need to be determined in
order to characterize the system.

We can start looking for the shape of the orbit rather than the
exact trajectories of the planets as a function of time. Therefore,
we ignore by now all quantities that depend on λ0 and t0, i.e. we
restrict our analysis to Am (Eq. (28)) and |C0| (Eq. (37)).

We define the quantity Ψ as

Ψ = 2(φ̄ − φ0) = φ1 + φ−1 − 2φ0, (41)

with φp = λ0 + arg(Cp) + π/2 − θ (Eq. (26)). Thus

Ψ = arg(C1(δ, ζ0, t0)) + arg(C−1(δ, ζ0, t0))
−2 arg(C0(δ, ζ0, t0)). (42)

From Eq. (37), we know that arg(Cp(δ, ζ0, t0)) =
arg(Cp(δ, ζ0, 0)) − pνt0. Hence Ψ depends only on ζ0 and
δ. One can show that any quantity defined as a function of φp
with p ∈ {−1, 0, 1} and independent of t0 and λ0 is a function
of Ψ.

The parameters Am, |C0|, and Ψ evolve in a different way
depending on the orbital configuration of the system (tadpole
or horseshoe). We thus need to split our analysis for these two
different configurations.

4.2.1. Characterization near the Lagrangian equilibrium

In the linear case, we can entirely determine the trajectories of
the co-orbitals analytically. According to Eqs. (31) and (32), the
amplitudes S 0 and S 1 = S −1 depend on α, ζ0, and δ. By iden-
tifying the phases angles appearing in Eq. (27) to the data and
then comparing with expression (30), we get three additional
equations

φ0 = λ0 + δ
π

3
− arctan

 √3δ
2 − δ

 , (43)

and

φ±1 = λ0 + δ
π

3
−
π

6
∓ νt0. (44)

These three equations, combined with the Eqs. (31) and (32) lead
to a system of five equations of the form (S 0, S 1, φ0, φ1, φ−1) =
F(α, δ, ζ0, λ0, t0), where F is a non-linear function of the five un-
known parameters. We can thus get an explicit expression for
these parameters from the observational data. Then, the expres-
sion of ν near the Lagrangian equilibrium (Eq. (7)) can be used
to get the value of µ. Finally, the inclination I can be deduced
from the definition of α (Eq. (26)):

sin I =
α

µan
· (45)
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Fig. 9. Level curves of δ (black) and ζ0 (red) for the tadpole configura-
tion, with respect to Am and Ψ. See the text for more details.

We can thus remove the classic µ sin I degeneracy in this case
and fully determine the exact masses of the planets and their
trajectories in space.

Replacing expressions (43) and (44) for φp in the expression
of Ψ (Eq. (41)) gives

Ψ = 2 arctan
 √3δ

2 − δ

 − π3 , (46)

i.e. near the Lagrangian equilibrium Ψ only depends on δ. Since
0 ≤ δ ≤ 1, we have Ψ ∈ [−π/3, π/3], and for δ = 1/2 we get
Ψ = 0, which corresponds to equal mass planets.

4.2.2. Large amplitude tadpole orbits

As discussed in Sect. 4.1.2, for large libration amplitudes it is not
possible to obtain an explicit expression for the orbital parame-
ters from the S p terms. The same applies to the phase angles φp.
However, for tadpole configurations it is still possible to inverse
the problem using implicit functions and to fully characterize the
orbits from the modulation terms in Eq. (27).

In Fig. 9, we show iso-values of the parameters ζ0 and δ with
respect to the quantities Am and Ψ (see Sect. 4.1.2 for more de-
tails). For tadpole orbits, we see that each couple (Am, Ψ) cor-
responds to a unique couple (ζ0, δ). One can thus determine the
values of ζ0 and δ directly from Am and Ψ.

We also know that |C0(δ, ζ0)| depends only on ζ0 and δ (see
Sect. 4.1.2). In Fig. 10 we show iso-values of |C0|. Since S 0 =
α|C0|, we can directly obtain the value of α from (ζ0, δ), and
hence from (Am, Ψ). We can thus determine sin I (Eq. (45)), since
µ is linked to ζ0 through expression (40). The parameters δ, ζ0, µ,
and sin I are then fully determined for the tadpole configuration.

Finally, similarly to the linear case (Sect. 4.1.1), for a given
δ one can show that φ0 is a bijective map for λ0 ∈ [0, 2π/n[,
and φ1 − λ0 is a bijective map for t0 ∈ [0, 2π/ν[ (see Eqs. (43)
and (44)). The values of λ0 and t0 are therefore determined by
the values of φ0 and φ1. Then, one can use Eqs. (3) and (5) to
obtain the orbital parameters of the co-orbitals.

4.2.3. Horseshoe orbits

For the horseshoe configuration, it is also not possible to ob-
tain explicit expressions for the orbital parameters from the S p

Fig. 10. Level curves of |C0| for the tadpole configuration with respect
to ζ0 and δ. See the text for more details.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

|C
0
|

δ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.5  0.6  0.7  0.8  0.9  1

(|
C

1
|+

|C
-1

|)
/2

δ

Fig. 11. Left: |C0| with respect to δ in the horseshoe configuration. As
Am(δ = 1/2) = +∞, we plot the quantity Am|C0|. Right: Am|C0| versus
δ in the horseshoe configuration. These quantities are symmetric with
respect to δ = 0.5. red: ζ0 = 23◦, purple: ζ0 = 19◦, blue: ζ0 = 15◦. See
the text for more details.

terms. However, a symmetry in ζ allows us to compute this (see
Appendix A.1):

Ψ = arg(C1) + arg(C−1) − 2arg(C0) = π. (47)

Since Ψ is constant in horseshoe configurations, we cannot use
it to get an additional constraint on the couple (δ, ζ0).

In Fig. 11 we plot |C0| and Am|C0| = (|C1| + |C−1|)/2 versus
δ (see Sect. 4.1.2 for more details). The graphs are symmetric in
δ = 1/2. One can see that these quantities vary significantly with
δ, but are are almost constant in regard to ζ0 (different colour
curves in Fig. 11), except near δ = 1/2 for Am|C0|. Thus, we
can assume an average value for ζ0 in the horseshoe domain.
From this average value, we get approximated values of δ and
α by knowing Am and |C0|. Then, we can obtain approximated
values for the parameters t0 and λ0 from φ0 and φ1, as explained
in the tadpole case. However, the degeneracy in µ sin I remains,
because of the strong dependence of ν̃ on ζ0 in the horseshoe
domain (see Fig. 3). One of the ways to get this information
is to consider higher order harmonics in the expansion of the
radial velocity, Eq. (25). However, as these harmonics are about
10 times smaller than S 1, much more accurate data is required.

A128, page 9 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526175&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526175&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526175&pdf_id=11


A&A 581, A128 (2015)

Table 1. Osculating orbital elements for a given date of two hypothetical
co-orbital systems orbiting a solar-mass star.

Tadpole Horseshoe
Param. planet 1 planet 2 planet 1 planet 2

m [M⊕] . . 200 100 17.15 3.00
a [au] . . . . 0.0987 0.1013 0.1 0.1
λ [deg] . . . 0 300 0 339
e . . . . . . . . 0.05 0.05 0 0
$[deg] . . 0 300 0 0
I [deg] . . . 60 60 90 90
S̄ [km s−1] 6.500 6.500

ā [au] . . . . 0.09955 0.10000
ζ0 [deg] . . 37.00 21.00
δ . . . . . . . 0.3333 0.1488

4.2.4. Tadpole or horseshoe?

Since the method that we use to determine the orbital parameters
of a co-orbital system depends on its configuration (tadpole or
horseshoe), it is legitimate to ask whether it is possible to know
the configuration type before we choose one method or another
for reducing the observational data.

Once the signature of a co-orbital system is detected (by
the observation of a modulation in the radial-velocity data) we
can compute Ψ from Eq. (42). One can see from Eq. (A.9) that
Ψ = π in the horseshoe configuration, while Ψ ∈ [−2, 2] in
the tadpole configuration (Fig. 9). Since the domains for Ψ are
exclusive in the different configurations, by computing Ψ we
can immediately distinguish between a horseshoe and a tadpole
configuration.

When the detected signal is at the limit of the instrumental
precision, the phases can be improperly determined. In this case,
one can always compute Am using expression (28). As shown in
Appendix A.2, Am ranges within [0,+∞[ in the horseshoe con-
figuration. In the tadpole configuration, Am reaches its maximum
value for δ = 1/2 and ζ0 near the separatrix. We can see in Fig. 9
that this quantity remains below 1/3. Therefore, Am > 1/3 is
also a sufficient condition to know that a co-orbital system is in
a horseshoe configuration.

4.3. Application to synthetic data

We now apply the methods developed in the previous sections to
two concrete situations of stars hosting a pair of coobital planets
in quasi-circular orbits, one for tadpole and another for horse-
shoe orbits. In Table 1 we list the initial osculating orbital ele-
ments for these two hypothetical systems orbiting a solar-mass
star. We then generate synthetic radial-velocity data for these
systems by numerically integrating the equations of motion us-
ing an n-body model. In order to create a realistic data set, we
use the same observational dates taken for the HD 10180 sys-
tem (Lovis et al. 2011) to simulate the acquisition days, and
associate with each measurement a Gaussian error with σ =
1 m/s. These synthetic data sets contain 160 measurements span-
ning 4600 days and correspond to an instrumental precision of
∼1 m/s. The orbital periods of the planets are around 11.5 days in
both examples, such that we can observe at least three complete
libration cycles over the length of the observations.
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Fig. 12. Periodograms of the synthetic radial velocity of the tadpole
configuration presented in Table 1. a) raw data sk; b) modified data s′k,
after the subtraction of the Keplerian signal (Eq. (20)); c) modified data
s̃k with φ = φ0 (Eq. (21)); and d) modified data s̃k with φ = φ0 + π/2
(Eq. (21)).

4.3.1. Tadpole orbits

Our tadpole system is composed of two Saturn-like planets at
0.1 au (comparable masses and eccentricities). The individual
RV amplitudes of both planets are K ∼ 10 m/s, well above the
instrument precision. Therefore, the signatures of the planets can
be easily identified in the data, and we use this example to illus-
trate how to retrieve the complete set of orbital parameters listed
in Table 1 with our method.

In Fig. 12a, we show a generalized Lomb-Scargle peri-
odogram of the radial velocity data (Zechmeister & Kürster
2009). The Keplerian component of the signal with a period
Pn ≈ 11 days can clearly be identified. We fit the raw data
with a Keplerian function (Eq. (18)) and obtain an initial esti-
mation for Pn ≈ 11.46 days, S̄ ≈ 6.5 m/s, S 0 ≈ 61.1 m/s, and
φ0 ≈ 341.6◦. We then subtract the Keplerian contribution to the
data and obtain a modified data set s′k (Eq. (20)). In Fig. 12b, we
show a periodogram of this modified data. We observe that the
main peak with a period of approximately 11 days is replaced by
two nearby smaller peaks. This is a clear indication of the pres-
ence of a modulation, each peak corresponding to the n±ν terms
(Eq. (27)).

In order to better determine the libration frequency, we mod-
ify the data again following expression (21) adopting φ = φ0 =
341.6◦ and φ = φ0 + π/2 = 71.6◦. In Figs. 12c and d we show
the periodograms of s̃k for these two transformations, respec-
tively. In both transformations we observe that the peak around
11 days is replaced by some power at the periods near 5 and
150 days, corresponding to the frequencies 2n and ν, respec-
tively (Eq. (22)). However, while for φ = φ0 the maximum power
is observed for ν (Fig. 12 c), for φ = φ0 + π/2 it is observed for
2n (Fig. 12 d). From expression (23), we see that the amplitude
Ŝ 1 associated with the term with frequency ν is reduced by

Ŝ 1(φ) = S 1 cos(φ̄ − φ) = S 1 cos
(
Ψ

2
+ φ0 − φ

)
. (48)
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Table 2. Fitted parameters using expression (27).

Param. Tadpole Horseshoe

Pn [day] . . 11.4599± 10−4 11.5492 ± 5 × 10−4

Pν [day] . . 154.66± 0.06 1340 ± 19
S̄ [km s−1] 6.5001± 10−4 6.5001± 10−4

S 0 [m/s] . . 61.1± 0.1 4.9± 0.1
S 1 [m/s] . . 4.23± 0.09 1.2± 0.1
S −1 [m/s] . 4.23± 0.09 1.2± 0.1
φ0 [deg] . . 341.6± 0.1 22.93± 1.69
φ1 [deg] . . 266.4± 1.8 309.3± 6.4
φ−1 [deg] . 33.3± 2.1 280.2 ± 7.9√
χ2 . . . . . 2.570 1.613

rms[m s−1] 2.8217 1.8489

Am . . . . . . . 0.069 0.247
Ψ [deg] . . −23.5 183.64

Table 3. Osculating orbital elements obtained through the inversion of
the harmonic terms fitted to the observational data (Table 2).

Tadpole Horseshoe
param. planet 1 planet 2 planet 1 planet 2

m [M⊕] 226.4 101.6 18.19∗∗ 2.74∗∗
a [au] . 0.099 0.101 0.1002 0.0987
λ [deg] 1.380 303.5 5.10 320.78
e . . . . . 0∗ 0∗ 0∗ 0∗
$ [deg] 0∗ 0∗ 0∗ 0∗
I [deg] 59.85 59.85 90∗ 90∗

ā [au] . 0.09948 0.09999
ζ0 [deg] 38.01 18.5*
δ . . . . . 0.3440 0.1309

Notes. The elements marked with (∗) cannot be determined with the
Keplerian circular orbit approximation (Eq. (18)), so they have been
fixed at constant values. (∗∗) Indicates that the displayed mass is the low-
est possible value (m sin I).

For tadpole orbits we have Ψ ∼ 0 (Fig. 9), which means that
φ̄ ∼ φ0 (Eq. (41)). Therefore, Ŝ 1 is maximized for φ ∼ φ0 and
minimized for φ ∼ φ0 + π/2 (Eq. (48)). Performing a FFT to s̃k
allows us to estimate Pν ≈ 154.66 days, S 1 ≈ 4.23 m/s, and
∆φ ≈ −116.5◦. We can also estimate φ̄ (and hence φ1 and φ−1)
using the ratio between the two amplitudes

φ̄ = φ0 + arctan
( Ŝ 1(φ0 + π/2)

Ŝ 1(φ0)

)
≈ −4.66◦. (49)

Finally, adopting these values as initial parameters, we refit the
raw data sk by performing a minimization of expression (27) us-
ing the Levenberg-Marquardt method (e.g. Press 1992). The re-
sults corresponding to the minimum of χ2 are shown in Table 2.

From the observational parameters listed in Table 2, we can
obtain the corresponding orbital parameters using the inversion
method explained in Sect. 4.2.2. The osculating orbital elements
are then obtained through the Eqs. (3) and (5). The results are
given Table 3. Except for the eccentricities and the longitudes
of the pericentre, which cannot be determined with a Keplerian
circular orbit approximation (Eq. (18)), we obtain a very good
agreement for the remaining parameters (cf. Table 1).

We can still improve the quality of the fit in a last step, by
performing an adjustment to the data using the direct n-body
equations of motion (e.g. Correia et al. 2010). By adopting the

Table 4. Best fitted orbital solution using the direct n-body equations
of motion, and adopting the orbital parameters listed in Table 3 as the
starting point.

Tadpole
param. planet 1 planet 2

m [M⊕] . . . 195.68 ± 0.31 100.40 ± 0.35
a [au] . . . . 0.099 ± 6 × 10−5 0.101 ±1 10−4

λ [deg] . . . 2.3 ± 1.7 306 ± 5
e . . . . . . . . 0.056 ± 0.003 0.049 ± 0.003
$ [deg] . . 0.01 ± 0.04 304.2 ± 0.4
I [deg] . . . 65 ± 2 57 ± 3

ā [au] . . . . 0.09953
ζ0 [deg] . . 37.40
δ . . . . . . . . 0.3391√
χ2 . . . . . 1.652

rms[m s−1] 1.8770

horseshoe
param. planet 1 planet 2

m [M⊕] . . . 18.79 ± 0.008 2.99 ± 0.005
a [au] . . . . 0.100 ± 2 × 10−5 0.099 ± 7 10−5

λ [deg] . . . 4.69 ± 2.83 318.42 ± 8.56
e . . . . . . . . 0.000 ± 10−3 0.000 ± 10−3

$ [deg] . . 0.000 ± 10−3 0.000 ± 10−3

I [deg] . . . 90∗ 90∗

ā [au] . . . . 0.1000
ζ0 [deg] . . 21.57
δ . . . . . . . . 0.1371√
χ2 . . . . . 1.595

rms[m s−1] 1.8513

orbital parameters listed in Table 3 as the starting point, the al-
gorithm converges rapidly to the best fit. The results are given
in Table 4. This last step slightly improves the orbital parame-
ters obtained previously (lower χ2 and rms), because it is able to
additionally fit the eccentricities and the longitudes of the peri-
centre. We note, however, that the n-body algorithm is only able
to converge to the correct orbital solution because it used the pa-
rameters from Table 3 as starting point. Indeed, the phase space
of co-orbital planets has many other local minima that provide
alternative solutions that are not real.

4.3.2. Horseshoe orbits

Our horseshoe system is composed of a Neptune-mass and a 3
Earth-mass planet at 0.1 au. It is at the limit of detection, since
the individual RV amplitudes of each planet are K = 4.85 m/s
and K = 0.85 m/s, respectively. With this example we intend to
show the limitations of our method.

In Fig. 13a, we show a generalized Lomb-Scargle peri-
odogram of the RV data. As for the tadpole example in the previ-
ous section (Fig. 12), the Keplerian component of the signal can
clearly be identified for a period Pn ≈ 11 days. We thus fit the
raw data with a Keplerian function (Eq. (18)) obtaining an initial
estimation for Pn ≈ 11.55 days, S̄ ≈ 6.5 km s−1, S 0 ≈ 4.9 m/s,
and φ0 ≈ 23◦, subtract its contribution to the data, and obtain
a modified data set s′k (Eq. (20)). However, unlike the tadpole
case, in the new periodogram of the residual data, there is no
clear peak above the noise (Fig. 13 b). Therefore, such a system
can easily be mistaken with a system hosting a single planet at
11 days.
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Fig. 13. Periodograms of the synthetic radial velocity of the horseshoe
configuration presented in Table 1. a) raw data sk; b) modified data s′k,
after the subtraction the Keplerian signal (Eq. (20)); c) modified data
s̃k with φ = φ0 (Eq. (21)); and d) modified data s̃k with φ = φ0 + π/2
(Eq. (21)).

We can nevertheless apply our method to search for the
traces of a co-orbital companion. We thus modify the data s̃k
according to expression (21) adopting φ = φ0 = 23◦ and
φ = φ0 + π/2 = 113◦. In Figs. 13c and d we show the peri-
odograms corresponding to these transformations, respectively.
For φ = φ0 the periodogram is very similar to the one with the
residual data (Fig. 13b), so we conclude there is nothing else
above the noise in the data. However, for φ = φ0 + π/2 the sce-
nario is completely different as a significant peak appears around
1500 days, corresponding to the libration frequency (Fig. 13d).
Indeed, for horseshoe orbits we have Ψ = π (Eq. (A.9)), which
means that φ̄ = φ0 + π/2 (Eq. (41)). Therefore, Ŝ 1 is null for
φ = φ0 and maximized for φ = φ0 + π/2 (Eq. (48)).

Performing a FFT to s̃k allow us to estimate Pν ≈ 1340 days,
S 1 ≈ 1.2 m/s, and ∆φ ≈ 295◦. Adopting these values as initial
parameters, we refit the raw data sk with expression (27). The re-
sults corresponding to the minimum of χ2 are shown in Table 2.
Comparing these results to the tadpole case, we observe that the
uncertainty associated with the S p and φp terms is larger, but still
near 1 m/s, which corresponds to the considered precision of the
instrument. Our method is therefore able to extract any informa-
tion on the existence of a co-orbital companion, provided that
the information on the libration terms is accessible in the data.

Once the existence of a co-orbital companion is confirmed,
we can determine the corresponding orbital parameters. The pa-
rameter ζ0 (which gives the departure of the semi-major axis
and the mean longitudes from their mean value) has a low
impact on the orbital parameters and cannot be easily deter-
mined in horseshoe configuration (see Sect. 4.2.3). However, its
value is constrained by the stability of the system: in the horse-
shoe configuration, it ranges between its lowest stable value for
µmin = µ sin I, in our case ≈6 × 10−5 (see Fig. 4), and the sep-
aratrix. We therefore have ζ0 ∈ [13◦, 24◦]. We take ζ0 = 18.5◦
(average value on this interval) and compute the corresponding

orbital parameters. We obtain a system close to the original one
(Table 3).

In the horseshoe case, we cannot determine either the eccen-
tricities and the longitudes of the pericentre, because we used
a Keplerian circular orbit approximation (Eq. (18)), or the in-
clination to the line of sight, because we only fit the first three
harmonics (Eq. (27)). In a final step, we perform an adjustment
to the data using the direct n-body equations of motion, and we
obtain a similar adjustment (Table 4).

5. Discussion and conclusion

In this paper we have revisited the dynamics of quasi-circular
co-orbital planets. By computing their gravitational effect on the
parent star, we have found a simple method for detecting this
kind of planets, provided that the orbital libration can be seen
in the observational data. Indeed, when the star is accompanied
by co-orbital planets, in addition to the Keplerian orbital mo-
tion, there is a modulation at a longer period, corresponding to
the libration frequency. Therefore, commonly used methods for
signal demodulation (see Sect. 3.3) can also be applied to co-
orbital systems, allowing the amplitude and the frequency of the
modulation to be identified more accurately.

Every time a modulation is observed in the motion of a single
planet, an inquiry should be made to check if it can correspond
to the libration induced by another co-orbital planet. In this pa-
per, we explain a way to quantify which co-orbital configurations
can be expected: for stability reasons, we can put boundaries for
pairs of the parameters (µ, ζ0); for data span duration reasons,
we can estimate the frequency of libration ν, depending on (n,
µ, ζ0); for measurement precision reasons, we can estimate the
amplitude of the modulating peaks, which depends on the pa-
rameters (µ, n, δ, ζ0).

For reasons of clarity, we exemplify our method in the case
of a radial velocity signal. However, our results are valid for any
other method that measures a projection of the stellar motion.
We have shown that the relative amplitude of the modulation
signal depends only on the distance to the Lagrangian equi-
librium, ζ0, and mass ratio, δ. Therefore, the detection of co-
orbital planets is enhanced for large libration amplitudes around
the Lagrangian equilibrium (i.e. small ζ0 values), and for plan-
etary masses equally distributed between the two co-orbitals
(δ ≈ 1/2).

In order to reduce the data, we proposed a direct inversion
from the periodograms of the signal to the osculating elements
of the system. For systems in the tadpole configuration we are
able to determine the inclination of the orbital plane with re-
spect to the plane of the sky and hence the true masses of the
planets (and not only the minimum masses). In the horseshoe
case this is not possible without considering higher harmonics
for the modulation.

Acknowledgements. We acknowledge support from CIDMA strategic project
UID/MAT/04106/2013. The “conseil scientifique de l’Observatoire de Paris” is
acknowledged for their financial support.

Appendix A: Symmetries

Equation (5), respectively (6), possesses several symmetries. We
use two of them to study analytically some features of the horse-
shoe configuration. On the one hand, we have the symmetry with
respect to ζ̇ = 0 (∆a/a = 0 in Fig. 2):

ζ(−(t − t0)) = ζ(t − t0). (A.1)
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On the other hand, we have the central symmetry of the phase
space (ζ,∆a/a) in ζ = π and ∆a/a = 0:

ζ
(
t − t0 +

π

ν

)
= 2π − ζ(t − t0). (A.2)

Similar expressions can be obtained for ζ̂. In the tadpole config-
uration, these symmetries exist as well, but the symmetry (A.2)
maps a vicinity of L4 to a vicinity of L5.

We can use these symmetries to simplify the expression of
the coefficients Cp given by Eq. (14). Our purpose is to study the
values of Am(δ, ζ0) and Ψ(δ, ζ0). Since none of them depends on
the value of τ0, we take τ0 = 0 from now on. The coefficients cp
(Eq. (36)) become

cp = cp(δ, ζ0, 0) =
ν̃

2π

∫ π/ν̃

−π/ν̃

eiδζ̃(τ)e−ipν̃τdτ. (A.3)

Since we took τ0 = 0, e−iδζ is an even function in the case of
a horseshoe orbit. Hence e−ipν̃τ becomes cos(pν̃τ) in the expres-
sions of the Cp. By splitting this expression into two integrals
and changing τ to τ + π/ν̃ in the first one, we get

cp =
ν̃

2π

∫ π
ν̃

0

[
eiδζ̃(τ+ π

ν̃ )e−ipπ + eiδζ̃(τ)
]

cos(pν̃τ)dτ. (A.4)

Then, using the symmetry given by expression (A.2), the previ-
ous integral simplifies as

cp =
ν̃

2π

∫ π
ν̃

0

[
eiδ(2π−ζ̃(τ))e−ipπ + eiδζ̃(τ)

]
cos(pν̃τ)dτ, (A.5)

hence

cp =
ν̃

π
eiπ(δ− p

2 )
∫ π

ν̃

0
cos

(
δ(π − ζ̃(τ)) −

pπ
2

)
cos(pν̃τ)dτ. (A.6)

As a consequence, using Eq. (14), we get for p = 0

C0 =
ν̃

π
eiδπ

∫ π
ν̃

0

[
(1 − δ) cos(δ(π − ζ̃(τ)))

−δ cos((δ − 1)(π − ζ̃(τ)))
]

dτ, (A.7)

and for q = ±1

Cq =
ν̃

π
ei(δπ− π

2 )
∫ π

ν̃

0

[
(1 − δ) sin(δ(π − ζ̃(τ)))

−δ sin((δ − 1)(π − ζ̃(τ)))
]

cos(qν̃τ)dτ. (A.8)

We obtain C1 = C−1.

A.1. Computation of Ψ

From Eq. (A.7), we have arg(C0(δ)) = δπ if δ ∈ [0, 1/2[ and
δπ + π if δ ∈]1/2, 1]. Since arg(C1) = arg(C−1) = (δ − 1/2)π
(Eq. (A.8)), we conclude that for any horseshoe configuration

Ψ = arg(C1) + arg(C−1) − 2arg(C0) = π, (A.9)

i.e. Ψ is constant and equal to π.

A.2. Computation of Am

Generally, the |Cq| (Eq. (A.8)) does not have an explicit expres-
sion. However, Am can be computed for some specific values of
δ. We denote Cδ

q = Cq(δ, ζ0, 0). For δ = 1/2, we have

C1/2
q =

ν̃

π

∫ π
ν̃

0

[
sin((π − ζ̃(τ))/2)

]
cos(qν̃τ)dτ. (A.10)

The amplitude of the first harmonics (q = ±1) of the Fourier se-
ries of an odd function is not null. Thus, since from expression
(A.7) we have that |C1/2

0 | = 0, we can conclude that in the horse-
shoe configuration Am( 1

2 , ζ0) = ∞ (Eq. (28)). Similarly, one can
also see from Eqs. (A.7) and (A.8) that Am(0, ζ0) = Am(1, ζ0) = 0.

Appendix B: Mass ratios

In Sect. 4.1.1, we have shown that in the vicinity of the
Lagrangian equilibrium, a planet with mass m1 is easier to
identify when its co-orbital companion is much more massive
(m1 � m2) rather than when m1 ≈ m2. We show here that this
result holds true in the horseshoe configuration. Using the sym-
metries (A.1) and (A.2), one can rewrite C1 (Eq. (A.8)) as

C1 =
2ν̃
π

ei(δπ− π
2 )

∫ π
2ν̃

0

[
(1 − δ) sin(δ(π − ζ̃(

π

2ν̃
− τ)))

−δ sin
(
(δ − 1)

(
π − ζ̃

(
π

2ν̃
− τ

)))]
sin(ν̃τ)dτ. (B.1)

For a mass m1, we want to compare the quantity S 1 = AmS 0 =
α|C1| in the case of m1 = m2 (δ = 1/2) against the case when
m1 � m2 (δ ≈ 1−m1/m2 = 1− ε). Writing X(τ) = π− ζ̃( π

2ν̃ − τ),
from Eq. (A.8) we have

|C1/2
1 | =

∣∣∣∣∣∣2ν̃π
∫ π

2ν̃

0
[sin(X(τ)/2)] sin(ν̃τ)dτ

∣∣∣∣∣∣ , (B.2)

and at first order in ε, Eq. (A.8) yields

|C1−ε
1 | =

∣∣∣∣∣∣ε 2̃ν
π

∫ π
2ν̃

0
[X(τ) + sin(X(τ))] sin(ν̃τ)dτ

∣∣∣∣∣∣ . (B.3)

We have X(0) = 0 and X( π
2ν̃ ) = π − ζ0. One can show that X

is a monotonous function in the interval τ ∈ [0, π/(2ν̃)], hence
sin(X/2) and X + sin(X) are a positive function in this interval.
Moreover, for X ∈ [0, π], we have the following inequality:

π sin(X/2) ≤ (X + sin(X)) ≤ 4 sin(X/2). (B.4)

Since sin(ν̃τ) is also a positive function on the considered in-
terval, the inequality in Eq. (B.4) holds true when we multiply
each term by sin(ν̃τ) and integrate over τ ∈ [0, π/(2ν̃)]. Finally,
we get

πC1/2
1 ≤ C1−ε

1 /ε ≤ 4C1/2
1 . (B.5)

When δ = 1/2, we have µ ≈ 2m1/m0, while when δ = 1 − ε, we
get µ ≈ m1/(εm0). Multiplying Eq. (B.5) by α, we obtain

π

2
S 1/2

1 ≤ S 1−ε
1 ≤ 2S 1/2

1 . (B.6)

We finally conclude that in the horseshoe case, for a given
mass m1, the co-orbital couple (m1,m2) is up to two times easier
to identify when m1 � m2 rather than when m1 ≈ m2.
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