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Abstract This paper formulates a circular restricted four body problem (CRFBP),

where the three primaries are set in the stable Lagrangian equilateral triangle con-

figuration and the fourth body is massless. The analysis of this autonomous coplanar

CRFBP is undertaken, which identifies eight natural equilibria; four of which are close

to the smaller body, two stable and two unstable, when considering the primaries to

be the Sun and two smaller bodies of the solar system. Following this, the model incor-

porates ‘near term’ low-thrust propulsion capabilities to generate surfaces of artificial

equilibrium points close to the smaller primary, both in and out of the plane containing

the celestial bodies. A stability analysis of these points is carried out and a stable sub-

set of them is identified. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft

system is used, for conceivable masses of a hypothetical asteroid set at the libration

point L4. It is shown that eight bounded orbits exist, which can be maintained with

a constant thrust less than 1.5× 10−4N for a 1000kg spacecraft. This illustrates that,

by exploiting low-thrust technologies, it would be possible to maintain an observation

point more than 66% closer to the asteroid than that of a stable natural equilibrium

point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor aster-

oid. The thrust required to enable close asteroid observation is determined in the

simplified CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624

Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of

the simplified model.
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1 Introduction

The general, spatial, four body problem is a complex 24 degree of freedom system.

However, the system can be reduced by exploiting integrals of motion to obtain a 12

degree of freedom system but cannot be reduced further without loss of generality. Fur-

thermore, it is well known that with four (or more) massive bodies there is no analytical

stability criterion valid for all time (Steves et al., 1998b). Therefore, the analysis of

such “non-restricted” models have mainly been limited to finding some stability crite-

rion relative to a particular configuration. Examples include Milani and Nobili (1983),

on a four body linear hierarchical1 system, and Roy et al. (1985), on fictitious coplanar

four body systems with different distribution of masses and hierarchies, in which a

numerical estimation of the duration of the stability for these systems is found. In or-

der to derive stability properties over infinite time intervals, it is necessary to consider

suitably simplified four body systems (Roy et al., 1985).

Examples of these “suitably simplified” models include autonomous configura-

tions (given by the relative equilibrium solutions) such as the straight line (Multon,

1910), square, equilateral triangle and kite configurations (Multon (1900), Steves et al.

(1998b), Pina and Lonngi (2009) and Sicardy (2011)), and non-autonomous models,

such as the Caledonian Problem (namely the coplanar, initially circular, equal masses,

four body problem), by Steves et al. (1998a). The latter is an important special case

as, although it does not admit the Jacobi integral, it allows almost all the other con-

ventional dynamical systems strategies to study the evolution and the stability of the

trajectories (e.g. the identification of periodic orbits, the study of the linear stability

(Hadjidemetriou, 1978) or the long term symplectic integration of the equations of mo-

tion). Another class of simplified cases fall into the category of the “restricted” FBPs

where one of the four bodies is considered massless. A study of relative equilibria in re-

stricted FBPs can be found in Simo’ (1978). Furthermore, relative equilibrium solutions

have been obtained in the special cases of equal mass symmetric configurations (e.g. the

collinear symmetric CRFBP by Michalodimitrakis (1981)) or by using Hill’s approxi-

mation (where the fourth body is assumed to be at a great distance and therefore its

influence is reduced to a perturbing term, transforming the system into a perturbed re-

stricted three body problem). Examples include Scheeres (1998) and Papadakis (2007),

the bicircular (Cronin et al. (1964), Koon et al. (2008)), or the quasi-bicircular (Gomez

et al., 2001) and the concentric circular models (Andreu, 2002). Among which papers

(Gomez et al., 2001) and (Andreu, 2002) which use this model as an approximation to

the Sun-Earth-Moon-Spacecraft system, highlight the lack of regions of “good stability

properties” in the vicinity of the triangular lagrangian points of the smaller, perturbed

system.

This paper investigates a particular restricted FBP, namely an autonomous (in a

rotating frame) coplanar CRFBP, where the three massive bodies are set in the stable

Lagrangian equilateral triangle configuration. This system, although dealing with the

dynamics of three masses and a particle, is different from the previously mentioned

restricted cases as it does not use Hill’s approximation or the assumption of equal

mass and symmetric configurations. There does exist a number of studies on restricted

FBP set in such a configuration mainly used to model existing binary systems (see

1 a system is said to be hierarchical if at a given epoch it can be defined to exist as a clearly
identified number of disturbed two body motions where the two bodies in a pair may be made
up of masses, a mass and a center of mass or two centers of mass
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Kloppenborg et al. (2010), Melita et al. (2008), Van Hamme and Wilson (1986), and

Schwarz et al. (2009)). Of particular relevance are the papers by Alvarez-Ramirez and

Vidal (2009) and Baltagiannis and Papadakis (2011) where the latter uses a numerical

approach to determine the number of equilibrium points and a linear stability analysis

depending on the distribution of the masses.

The objective of this paper is to identify completely novel orbits both for mathemat-

ical interest as well as for potential future mission applications. Initially the natural

evolution of this model is studied, which identifies eight natural equilibrium points;

four of which are close to the asteroid. Following this, the system is perturbed by the

inclusion of low-thrust propulsion (such as solar electric propulsion (SEP)) previously

only considered in two and three-body restricted problems.

Space mission design for low-thrust spacecraft has been extensively investigated

from the late 1990’s. So far the two major types of low-thrust propulsion, which have

been studied in this context, are solar sails and SEP, the latter considered in this pa-

per. Research on this topic, at present, mainly focus on finding artificial equilibria as

in Morimoto et al. (2007), McInnes et al. (1994) and Baig and McInnes (2008), on

generating non-Keplerian periodic orbits using solar sails or low thrust, e.g. Morimoto

et al. (2006), Waters and McInnes (2007), Baig and McInnes (2009) and McKay et al.

(2011), on the systematic cataloguing of non-Keplerian orbits using SEP as in McKay

et al. (2009), or on analyzing the stability properties of minimum-control artificial equi-

librium points as in Morimoto et al. (2007) and Bombardelli and Pelaez (2011), all of

which are set in restricted two or three body models.

Throughout the paper the low-thrust Sun-Jupiter-Asteroid-Spacecraft is analyzed,

as a particular case, for a range of estimated masses of a hypothetical Asteroid set to be

trapped at the Lagrangian point L4. Surfaces of artificial equilibrium points are then

identified and a stability analysis of them undertaken. This paper highlights the poten-

tial of this investigation for designing observation missions to the Jupiter Trojans. This

swarm of asteroids has been recognized as a present target for space science missions,

as understanding it may lead to clues to the origin and dynamical evolution of Jupiter

itself (Shoemaker et al., 1988). Currently, the Trojan asteroids are completely unex-

plored and largely unknown and any visit by a spacecraft will revolutionize our current

understanding of these bodies (Rivkin et al., 2009). Moreover, although moving on

tadpole orbits around the L4 and L5 points of the Sun-Jupiter-Spacecraft system (see

Marzari (2006)), these asteroids are often modeled as fixed in the equilateral triangle

configuration, e.g. considering them as concentrated at L4, (see Marzari et al. (2002),

Steves et al. (1998b), Steves et al. (1998a)). This configuration is also considered as

the Solar system example of the equilateral triangle relative equilibrium solution found

by Lagrange (Dvorak et al. (2008) and Baltagiannis and Papadakis (2011).

However, as there are no important Trojan Asteroids in or close to the L4 point

of the Sun-Jupiter system, a numerical investigation was performed, in order to test

the validity of the stability analysis of the model when the Asteroid is moved from the

exact L4 location to the actual librating orbit of some real Jupiter Trojan. There are

a number of papers on the application of theoretical results to real systems (see Hou

and Liu (2010), Marchal (2011), Pina and Lonngi (2009) and Hadjidemetriou (2008)).
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2 The autonomous coplanar CRFBP

In this paper an autonomous coplanar CRFBP is analyzed; it is the problem of deter-

mining the dynamics of a body PS that moves under the influence of the gravitational

field generated by three massive bodies, Pj of masses mj , j = 1, 2, 3 respectively (say

m1 ≥ m2 ≥ m3). It is called restricted as the body PS is assumed to have negligible

mass mS = 0. Furthermore it is Coplanar and circular since all the massive bodies

revolve in the same plane and with the same angular velocity ω, following circular

orbits around the barycenter of P1 and P2.

Finally, it is autonomous as, taking a rotating frame of reference Ox,y,z , where the x/y

plane contains the three bodies, centered in the center of rotation of the planets and

revolving around the third axis with the same angular velocity ω of the bodies, all the

primaries P1, P2 and P3 will be fixed in the rotating frame.

Moreover, in this paper, the primaries are set in the Lagrangian equilateral triangle

configuration where the position of the third primary P3 corresponds to one of the

triangular Lagrangian points, such that the three massive bodies form an equilateral

triangle, as in Ambrosetti and Prodi (1993).

This configuration is well known to be stable if the masses of the three planets satisfy

the condition m1m2+m1m3+m2m3

(m1+m2+m3)2
< 1

27 (see Gascheau (1843) , Routh (1875), Erdi

et al. (2009) and Schwarz et al. (2009)); this condition is equivalent to 27(m1m2 +

m1m3 +m2m3)− (m1 +m2 +m3)2 < 0.

As we assumed m3 ≤ m2 and the left term of this inequality is monotonically

increasing in m3, ∀m3 ∈ (0,m2), such left term is maximized for m3 = m2, thus:

27(m1m2 +m1m3 +m2m3)− (m1 +m2 +m3)2 < 27(2m1m2 +m2
2)− (m1 + 2m2)2

∀m1,m2.

Therefore the stability condition becomes:−m2
1+50m1m2+23m2

2 < 0 (more restrictive

then the previous), that rearranged is: m1
m2

> 25 + 18
√

2. In addition, the mass of the

Asteroid is taken to be small enough not to influence the motion of the main primaries

P1 and P2 (i.e. the center of rotation of the system remains in the barycenter of the

two main bodies).

Scaled units of measure for mass and distance are used, normalized with the sum of

the masses of P1 and P2 and their distance respectively, while the gravitational constant

G and the rotational velocity ω of the system are set to 1. In nondimensional units let

µ, 1 − µ and ε be the scaled mass of P2, P1 and P3 respectively, where µ = m2
m1+m2

,

1− µ = m1
m1+m2

, ε = m3
m1+m2

and m3 � m1,m2.

As the system of reference has its origin in the barycenter O and it rotates with the

same angular velocity of P1 and P2, these two planets will be fixed and, without loss of

generality, we can consider their positions to be P1 = (−µ, 0, 0), P2 = (1−µ, 0, 0). This

implies that, in order to form an equilateral triangle with them, the position of the

third primary has to be: P3 = (Lx, Ly, 0) = ( 12 − µ,
√
3
2 , 0). The system just described

is shown in Figure 1.

The dynamics of the massless spacecraft, whose state vector is expressed in non-

dimensional cartesian coordinates x = [x, y, z, vx, vy, vz ]T , is described by the system:


ẍ = 2ẏ − ∂Ω

∂x

ÿ = −2ẋ− ∂Ω
∂y

z̈ = −∂Ω∂z

(1)
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Fig. 1 The autonomous coplanar CRFBP; in a rotating frame of reference, the planets are
fixed and form an equilateral triangle

where the augmented or effective potential and the distances of the spacecraft from

each of the three primaries are respectively:

Ω = −x
2+y2

2 − (1−µ)
r1
− µ
r2
− ε
r3
,

r1 =
√

(x+ µ)2 + y2 + z2,

r2 =
√

(x+ µ− 1)2 + y2 + z2,

r3 =
√

(x− Lx)2 + (y − Ly)2 + z2,

and ∂Ω
∂x , ∂Ω∂y and ∂Ω

∂z are the partial derivative of Ω with respect to x, y and z, while

the “dot” symbolizes differentiation with respect to time.

Note that if ε→ 0, system (1) degenerates to the classical CR3BP, while if both ε→ 0

and µ→ 0 it becomes a R2BP.

In order to find the equilibrium points of the system, the velocities ẋ, ẏ, ż and the

accelerations ẍ, ÿ, z̈ are set to be zero in (1) obtaining:



∂Ω
∂x = 0

∂Ω
∂y = 0

∂Ω
∂z = 0

⇔



x− (1−µ)(x+µ)√
(x+µ)2+y2+z2

3 −
µ(x−(1−µ))√

(x−(1−µ))2+y2+z2
3 −

ε(x−Lx)√
(x−Lx)2+(y−Ly)2+z2

3 = 0

y − (1−µ)y√
(x+µ)2+y2+z2

3 −
µy√

(x−(1−µ))2+y2+z2
3 −

ε(y−Ly)√
(x−Lx)2+(y−Ly)2+z2

3 = 0

− (1−µ)z√
(x+µ)2+y2+z2

3 −
µz√

(x−(1−µ))2+y2+z2
3 − εz√

(x−Lx)2+(y−Ly)2+z2
3 = 0

(2)

As we are in the stable Lagrangian configuration such system admits eight solutions

(see Baltagiannis and Papadakis (2011)), the equilibrium points Mj , j = 1, ..., 8, de-

fined at the intersections of the three surfaces described by its equations, see Appendix

A.

Figures 2 and 3 show the behavior of the three surfaces which satisfy system (2)

in the vicinity of the third primary; in this region such surfaces form four equilibrium

points M4, M5, M6 and M7 on which this paper is focussed. The former shows the

three surfaces in three dimensions, while the latter represents them sectioned by the

z = 0 plane, part a), and intersected with this plane, part b).

In particular, in these Figures, the continuous, light, meshed surfaces represent the

solution of the first equation ∂Ω
∂x = 0 of system (2), the dashed, dark, meshed surfaces
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show the solution of ∂Ω
∂y = 0, while the solution of the third equation is the plane

z = 0, plotted in the Figures as well. As the third equation is satisfied by the plane

z = 0, all the equilibria are bounded to stay on this plane, which, equivalently, can be

seen as the degeneration of system (2) into a two dimensional system for z = 0 (see

Ceccaroni and Biggs (2010)).

Fig. 2 The four equilibria close to the asteroid; spatial view

Fig. 3 The four equilibria close to the asteroid; a) z = 0 section of the spatial view; b)
Intersection with the plane z = 0

The qualitative dynamics close to the asteroid do not change for different masses

of the asteroid ε ∈ (0, µ), in that, there are always four equilibrium points configured

approximately at the same angle relative to the asteroid. However, quantitatively, as

the mass increases, the equilibrium points are displaced further from the asteroid,
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as shown in the Figure 4 a) and b) where the first shows the behavior of the four

equilibrium points as the mass of the asteroid increases while the second is focussed

just on M4 and M5.

Thus, we would conclude that the only assumptions on the masses of our sys-

tem should be the stability condition, which, in nondimensional units, becomes: µ <
(13−9

√
2)

14 and that the mass of the asteroid has to be small enough such that it does

not affect the motion of the other two Primaries.

Fig. 4 Equilibrium Points; a) ∀ε ∈ (0, µ) the two lines intersects four times in the region
near the asteroid ; b) Zoomed image

3 Stability analysis

Hereafter, for simplicity of notation, (xe, ye, ze) will indicate a generic equilibrium so-

lution of system (2); moreover, for convenience, a translation to a generic equilibrium

point (xe, ye, ze) is performed:


x′ = x− xe
y′ = y − ye
z′ = z − ze

(3)

but, to simplify notation, we will ignore the indices above x′, y′, z′.
Then we linearize the motion close to this generic point (xe, ye, ze), obtaining

ẋ = vx
ẏ = vy
ż = vz
v̇x = 2vy + αx+ χy + δz

v̇y = −2vx + χx+ βy + φz

v̇z = δx+ φy + γz

(4)
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with

α = 1 +
(1−µ)

[
2(xE+µ)2−yE

2−zE
2
]

√
(xE+µ)2+y2

E
+z2
E

5 +
µ
[
2(xE+µ−1)2−yE

2−zE
2
]

√
(xE+µ−1)2+y2

E
+z2
E

5 +
ε
[
2(xE−Lx)2−(yE−Ly)2−zE

2
]

√
(xE−Lx)2+(yE−Ly)2+z2

E

5 ,

β = 1 +
(1−µ)

[
−(xE+µ)2+2yE

2−z2E
]

√
(xE+µ)2+y2

E
+z2
E

5 +
µ
[
−(xE+µ−1)2+2yE

2−z2E
]

√
(xE+µ−1)2+y2

E
+z2
E

5 +
ε
[
−(xE−Lx)2+2(yE−Ly)2−z2E

]
√

(xE−Lx)2+(yE−Ly)2+z2
E

5 ,

γ =
(1−µ)

[
−(xE+µ)2−yE

2+2z2E

]
√

(xE+µ)2+y2
E

+z2
E

5 +
µ
[
−(xE+µ−1)2−yE

2+2z2E

]
√

(xE+µ−1)2+y2
E

+z2
E

5 +
ε
[
−(xE−Lx)2−(yE−Ly)2+2z2E

]
√

(xE−Lx)2+(yE−Ly)2+z2
E

5 ,

χ = 3

{
(1−µ)[(xE+µ)yE ]√
(xE+µ)2+y2

E
+z2
E

5 +
µ[(xE+µ−1)yE ]√

(xE+µ−1)2+y2
E

+z2
E

5 +
ε[(xE−Lx)(yE−Ly)]√

(xE−Lx)2+(yE−Ly)2+z2
E

5

}
,

δ = 3

{
(1−µ)[(xE+µ)zE ]√
(xE+µ)2+y2

E
+z2
E

5 +
µ[(xE+µ−1)zE ]√

(xE+µ−1)2+y2
E

+z2
E

5 +
ε[(xE−Lx)zE ]√

(xE−Lx)2+(yE−Ly)2+z2
E

5

}
,

φ = 3

{
(1−µ)[yEzE ]√

(xE+µ)2+y2
E

+z2
E

5 +
µ[yEzE ]√

(xE+µ−1)2+y2
E

+z2
E

5 +
ε[(yE−Ly)zE ]√

(xE−Lx)2+(yE−Ly)2+z2
E

5

}
.

(5)

Calling A the matrix corresponding to system (4), namely:

A =


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

α χ δ 0 2 0

χ β φ −2 0 0

δ φ γ 0 0 0

 (6)

The characteristic polynomial of A is

Ψ6 + (4− α− β − γ)Ψ4 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ)Ψ2 + (αφ2 + βδ2

+γχ2 − αβγ − 2χδφ) = 0.
(7)

As (7) is a biquadratic equation it is useful to set Γ = Ψ2, and, observing that (4 −
α− β − γ) = 2 in (5), yields the monic polynomial of the third degree:

Γ 3 + 2Γ 2 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ)Γ + (αφ2 + βδ2 + γχ2 − αβγ
−2χδφ) = 0.

(8)

Following the usual procedure to solve third degree polynomials, see for example, Artin

(1991), we call

p = − 4
3 + (αβ + αγ + βγ − χ2 − δ2 − φ2 − 4γ),

q = 16
27 −

2(αβ+αγ+βγ−χ2−δ2−φ2−4γ)
3 + (αφ2 + βδ2 + γχ2 − αβγ − 2χδφ),

∆ = q2

4 + p3

27 .

(9)

Then it is well known that the three solutions Γ1,2,3 of (8) are the only three

solutions among those nine

Γ1,2,3 = 3

√
− q3 +

√
∆+ 3

√
− q3 −

√
∆− 2

3
(10)

such as (
3

√
− q2 +

√
∆

)
·
(

3

√
− q2 −

√
∆

)
= −p3 ∈ R. (11)
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This means that the six eigenvalues of system (4) will be Ψk, k = 1, ..., 6 defined as:

Ψk = ±
√
Γj k = 1, ..., 6; j = 1, 2, 3. (12)

By the stability result for unequal masses of Baltagiannis and Papadakis (2011),

there exist a lower limit for the mass ratio m1
m1+m2

(= 1− µ) such as, for all the values

bigger than that, the points M6 and M7 are always stable, which happens, for example,

when fixing the three massive bodies in our model to be the Sun and any other two

objects of the Solar System. Moreover, as such ratio decreases with the increase in mass

of the second primary, we fix m1
m1+m2

to be the minimal obtainable for the solar system,

or, equivalently, we choose P2 to be Jupiter (i.e. µ = 0.000953592, 1− µ = 0.999046),

configuration that, in particular, satisfies the stability condition
(1−µ)
µ > 25 + 18

√
2

that can also be rearranged as: µ <
(13−9

√
2)

14 .

From now on, we will consider the main primaries of our system to be the Sun and

Jupiter; therefore, fixing a specific mass ε ∈ (0, µ) for the hypothetical asteroid, and

evaluating the eigenvalues corresponding to both the equilibrium points M4 and M5,

the ∆ will be negative, while
√
−3p will be greater than one, which, as will be shown

later on, means that at least one of the three eigenvalues will have Real part non-zero,

i.e. the equilibrium points are linearly unstable and therefore nonlinearly unstable; on

the other hand for both the equilibrium points M6 and M7, the ∆ will be negative, and√
−3p will be smaller than one, which, implies that all the eigenvalues will be purely

imaginary, i.e. the equilibrium points are linearly stable.

4 The low-thrust autonomous coplanar CRFBP

The dynamics of a low-thrust spacecraft in the autonomous coplanar CRFBP is now in-

vestigated. Using SEP propulsion our spacecraft can create artificial equilibrium points

in the spatial vicinity of the asteroid, suitable for observation missions. In addition, a

subset of these novel equilibrium points are proved to be stable, such that the motion

will remain bounded in a small region about them, with relatively low fuel requirements

and without the need for a state feedback control.

Given a maximum thrust capability Fmax, expressed in N , and an approximate

weight for the spacecraft Ws, evaluated in kg, the maximal acceleration in the non-

dimensional units is given by:

amax = Fmax
Ws

N
kg = Fmax

Ws
· m
s2

= Fmax
Ws

· Kg
m2

m3

Kg·s2

= Fmax
Ws

d2P1/P2

(m1+m2)
1
G ,

(13)

where dP1/P2
means the distance in meters between the two major Primaries.

The acceleration will be indicated with an̂ = axx̄ + ayȳ + az z̄, where ax, ay, and az
are the components of the acceleration in the x, y and z directions, a =

√
a2x + a2y + a2z

is the magnitude and n̂ is the direction of the acceleration itself.

Considering the actual thrust capability range between 0.001N to 0.3N , as stated

by the results of the “UK ion propulsion programme” (Fearn and Crookham, 2005),

the maximal reachable thrust Fmax is initially set to be 0.3N . Moreover, in order

to estimate the range of possible acceleration on the spacecraft it’s mass is set to be

1000kg. For the Sun-Jupiter-Asteroid-Spacecraft system, the non-dimensional value of
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the maximum acceleration amax (corresponding to the maximal thrust Fmax = 0.3N)

will therefore be 1.36765. Moreover the acceleration has to be constant in the direction

of the perturbation, namely

∂

∂x
(an̂) =

∂

∂y
(an̂) =

∂

∂z
(an̂) = 0. (14)

Adding low-thrust to system (1) it becomes:
ẍ = 2ẏ − ∂Ω

∂x + ax
ÿ = −2ẋ− ∂Ω

∂y + ay

z̈ = −∂Ω∂z + az

(15)

with Ω, a, r1, r2 and r3 as in (1).

Again, to find the equilibrium points, the velocities ẋ, ẏ, ż and the accelerations ẍ, ÿ, z̈

are set to be zero in (15), obtaining:
ax = ∂Ω

∂x

ay = ∂Ω
∂y

az = ∂Ω
∂z

⇔


a = |∇Ω|

n̂ = − ∇Ω|∇Ω|
(16)

In which, the second system states that, in order to get a new equilibrium point,

the acceleration on the spacecraft due to the thrusters has to be equal in magnitude

(first equation) but opposite in direction (second equation) to the acceleration on the

spacecraft due to the gravitational field at that point; the sign of the three compo-

nents ax, ay and az will therefore be determined (and, in particular, opposite) by the

respective components of the gravitational field evaluated in the point.

5 Stability analysis of the linearized system

Notice that, with a constant thrust, system (15), once linearized, is equal to the linear

system in (4) and therefore the linear stability of the equilibrium points resulting from

system (16) will be given by the analysis of the eigenvalues in (12). By the Lyapunov

Stability theorem, see for example Arnold et al. (2006), in order to obtain a linearly

bounded motion, the eigenvalues must have Real part less than or equal to zero. In our

case, we cannot accept a non zero Real part, as it would imply that either Re(Ψ2k−1) >

0 or Re(Ψ2k) = Re(−Ψ2k−1) = −Re(Ψ2k−1) > 0 for k = 1 and/or 2 and/or 3 ,

and this would lead to a saddle × saddle × saddle, a saddle × saddle × center or a

saddle× center × center unstable equilibrium point.

Therefore, in this case, the only acceptable way to get a linearly bounded motion

is with Re(Ψk) = 0, ∀ k = 1, ..., 6.

Lemma 1 If ∆ < 0 then the solutions Γj , j = 1, 2, 3 of (8) are in R.

Proof:

Let be ∆ < 0.

From (10) and (11), and considering the fact that ∆ < 0, the solutions Γj , j = 1, 2, 3

of (8) can be rearranged to yield the three solutions among these nine

Γ1,2,3 = 3

√
− q

3
+ i
√
−∆+ 3

√
− q

3
− i
√
−∆− 2

3
(17)
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that satisfy the condition:(
3

√
− q

2
+ i
√
−∆
)
·
(

3

√
− q

2
− i
√
−∆
)

= −p
3
∈ R. (18)

Notice that, from system (9),

∆ < 0⇒ p < 0 (19)

and that the two numbers

− q2 + i
√
−∆

− q2 − i
√
−∆ (20)

are complex conjugates (same Real part, opposite Imaginary part) such that:

| − q
2 + i

√
−∆| = | − q

2 − i
√
−∆| =

√
(− q2 )2 − (

√
−∆)2 =

√
−p3 ∈ R. (21)

Calling

θ =

 arctan
(
− 2
√
−∆
q

)
if q < 0

arctan
(
− 2
√
−∆
q

)
− π if q > 0

(22)

the two numbers can be rewritten as:√
−p

3

27 (eiθ)√
−p

3

27 (e−iθ)
(23)

Thus, extracting the cubic root, gives:√
−p3 (ei(

θ
3+

2kπ
3 ))√

−p3 (ei(−
θ
3+

2hπ
3 ))

(24)

with h, k = 0, 1, 2.

For condition (18), we can only accept the couples (h = 0; k = 0), (h = 2; k = 1)

and (h = 1; k = 2). This implies that our three acceptable solutions of (8) can be

summarized in a compact form as:

Γj =
√
−p3 (ei(

θ
3+

2(j−1)π
3 ) + ei(−

θ
3+

4(j−1)π
3 ))− 2

3

=
√
−p3

(
cos
(
θ
3 +

2(j−1)π
3

)
+ i sin

(
θ
3 +

2(j−1)π
3

))
+
√
−p3

(
cos
(
θ
3 +

2(j−1)π
3

)
− i sin

(
θ
3 +

2(j−1)π
3

))
− 2

3

= 2
√
−p3 cos

(
θ
3 +

2(j−1)π
3

)
− 2

3 ,

(25)

with j = 1, 2, 3.

Which demonstrates that ∆ < 0⇒ Γj ∈ R, ∀j = 1, 2, 3 ut.

Lemma 2 If
√
−3p < 1 then Γj < 0, ∀j = 1, 2, 3.
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Proof:

By (25) for each j = 1, 2, 3 we can rewrite Γj as

Γj = 2

√
−p

3
cos

(
θ

3
+

2(j − 1)π

3

)
− 2

3
. (26)

Then, for hypothesis:

2
√
−p3 cos

(
θ
3 +

2(i−1)π
3

)
− 2

3 ≤ 2
√
−p3 −

2
3 <

2
3 −

2
3 = 0 ut (27)

Lemma 3 If {
∆ < 0√
−3p < 1

(28)

then the six eigenvalues of system (4) are purely Imaginary.

Proof:

The proof of the Lemma is straight forward since the eigenvalues of (4) are Ψk =

±
√
Γj , k = 1, ..., 6; j = 1, 2, 3. Considering the hypothesis and applying Lemma 1,

indeed, yields that Γ ∈ R,∀j = 1, 2, 3. Then, for Lemma 2, Γj < 0, ∀j = 1, 2, 3, which

are the two conditions that lead to the thesis of Lemma 3 ut.

Therefore, the six eigenvalues can be rearranged in the form:

Ψk = ±i
√
−Γj , k = 1, ..., 6; j = 1, 2, 3. (29)

Figure 5 shows the spatial view of the three possible topologies of the zone that satisfies

the conditions in (28), obtained for a realistic range for the mass of the hypothetical

asteroid (i.e. from zero to the total mass of the Jupiter Trojans ∼ 6× 1020kg).

In particular part a) of the Figure represents the topology of the “four leaf clover”

(Ceccaroni and Biggs, 2010) for m3 ∈ [0; 1.648 × 1017[ (⇒ ε ∈ [0; 8.27632 × 10−14[),

part b) represents it for m3 = 1.648 × 1017 (⇒ ε = 8.27632 × 10−14), and part c) for

m3 ∈]1.648× 1017; 6× 1020] (⇒ ε ∈]8.27632× 10−14; 3.01356× 10−10]).

In this figure, the zone that satisfies the conditions in (28), is the linearly “stable zone”,

intersection of the zone outside the dashed, dark, meshed surfaces and that outside the

continuous, light, meshed surfaces which represents the solution of the first and the

second equations of system (28) respectively.
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Fig. 5 The possible topologies obtainable varying the mass of the Asteroid; a) m3 ∈ [0; 1.648×
1017[ (⇒ ε ∈ [0; 8.27632 × 10−14[). b) m3 = 1.648 × 1017 (⇒ ε = 8.27632 × 10−14). c)
m3 ∈]1.648× 1017; 6× 1020] (⇒ ε ∈]8.27632× 10−14; 3.01356× 10−10]).
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For displaying purpose only, from now on, the mass of the Asteroid will be set to be

equal to the major of the actual Trojan Asteroids, namely 624-Hektor, therefore fixing

m3 = 1.4 × 1019kg (which implies ε = 7.03165 × 10−12). Qualitatively the results for

this value will be the same as for each value in the range considered, from zero to the

total mass of the Jupiter Trojans.

Fig. 6 Linearly stable/unstable zones; the three dimensional “four leaf clover” boundary be-
tween the linearly stable and the unstable zones near the asteroid

Fig. 7 Linearly stable/unstable zones; a) z = 0 section of the spatial view; b) Intersection
with the plane z = 0

Figure 6 represents the spatial view of the linearly stable zone of the Sun-Jupiter-

Asteroid-Spacecraft system, while, once again, Figure 7 represents the horizontal x/y

section, part a), and its intersection with the x/y plane, part b).
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Of course, there exist an upper, external limit of the linearly stable zone as repre-

sented in Figure 8.

Fig. 8 The outside boundary; The linearly stable zone is bounded.

Fig. 9 The outside boundary; a) z = 0 section of the spatial view b) Intersection with the
plane z = 0

In particular the first inequality of system (28) is verified by the points between

the dashed, dark, meshed surfaces, while the second by those between the continuous,

light, meshed surfaces. Thus, within the bounded area defined by the intersection of

these two zones the linearized motion is stable. Once again, these zones are represented

in the three dimensions, Figure 8, then sectioned with the z = 0 plane, Figure 9 a),

and finally intersected with this plane, Figure 9 b).
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With reference to Figure 5 we should note that the external limit is separated from

the four leaf clover for small values of the mass of the asteroid, then approaches it as

the mass of the Asteroid grows to 1.648×1017kg, where two surfaces becomes tangent,

and finally, as the mass overcomes such value, the two surfaces merge together and the

lower part of the four leaf clover opens.

The maximum possible thrust required to overcome the lower outside boundary is

about 7 × 10−4N while for the upper one the thrust required is about 2.5 × 10−2N .

However, for the system considered, the maximum thrust actually needed for this

simplified model will be lower than 1.5× 10−4N .

For the purpose of exposition, eight linearly stable artificial equilibrium points A, B, C,

D, E, F, G, H are chosen, which have to fulfill three main requirements: to be

generated by a thrust lower than 1.5 × 10−4N , to be at a distance from the unstable

zone equal or higher than 3500km (far enough from the unstable zone to account for

the likelihood of injection/position errors of the spacecraft), but remaining as close

as possible to the asteroid. Moreover we take the first four lying on the x/y plane,

while the other on the x′/z plane where x′ is the tilted horizontal axis y = −(x −
Lx)

M5x−M4x
M5y−M4y

+Ly, (i.e. the line passing through the asteroid and perpendicular to the

segment connecting M4 and M5). The eight points (whose coordinates are listed in the

electronic supplementary material A (online only)) result to be at a distance smaller

than 300000km from the asteroid (note that the distance of the stable equilibrium

points from the Asteroid is about 1.16× 106km, more that two thirds bigger than the

distance of the asteroid from the artificial equilibrium points chosen).

In this system, in non-dimensional units, the amount of thrust required to create

the two artificial points in A = (Ax;Ay;Az) and in G = (Gx;Gy;Gz) are evaluated;

the behavior of the dynamics close to these two artificial equilibrium points, as well

as their required thrust, are representative of the four points on the z = 0 plane, and

for the four on the x′/z plane respectively, as can be seen in Figures 11 and 12, and,

therefore, will be the only two investigated in detail.
To this end the computation of the gravitational field in both A and G is needed:



ax = −Ax +
(1−µ)(Ax+µ)√

(Ax+µ)2+A2
y+A2

z
3 +

µ(Ax−(1−µ))√
(Ax−(1−µ))2+A2

y+A2
z
3 +

ε(Ax−Lx)√
(Ax−Lx)2+(Ay−Ly)2+A2

z
3

= 0.000233755

ay = −Ay +
(1−µ)Ay√

(Ax+µ)2+A2
y+A2

z
3 +

µAy√
(Ax−(1−µ))2+A2

y+A2
z
3 +

ε(Ay−Ly)√
(Ax−Lx)2+(Ay−Ly)2+A2

z
3

= 0.000521729

az =
(1−µ)Az√

(Ax+µ)2+A2
y+A2

z
3 + µAz√

(Ax−(1−µ))2+A2
y+A2

z
3 + εAz√

(Ax−Lx)2+(Ay−Ly)2+A2
z
3

= 0
(30)

which yields to a =
√
a2x + a2y + a2z = 0.000571701 corresponding approximately

to a force of 0.000125406N ; the same evaluation for the point G leads to (ax, ay, az) =

(0.0000240703,−0.00001415, 0.00034275) which is a =
√
a2x + a2y + a2z = 0.000343885

corresponding approximately to a force of 0.000075433N .

These thrusts are represented respectively by the two “tube shaped”, meshed sur-

faces in Figures 10, 11 and 12; the first thrust is approximately the same required to

create the other three equilibrium points lying on the x/y plane (B, C, and D), while

the other is approximately the same required to create artificial equilibrium points set

on the x′/z plane (E, F , and H). Figure 11 a) and b) represents the horizontal x/y

section and the intersection with the x/y plane of Figure 10.

As the four leaf clover is tilted with respect to the system of reference, it is also useful,
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in terms of visual presentation, to section and intersect it with the vertical plane x′/z
as shown in Figure 12 a) and b) respectively.

Note that, the eight points in Figures 10, 11 and 12 lie 3500km outside the linearly

unstable zone, although it is not easy to visualize.

Fig. 10 Adding the low-thrust; eight artificial equilibrium points are created in the linearly
stable zone using a thrust lower than 1.5× 10−4

Fig. 11 Adding the low-thrust; a) z = 0 section of the spatial view; b) Intersection with the
plane z = 0 and projection on this plane of the direction of the thrust required

Moreover, parts b) of Figures 11 and 12 show the projections, on the respective

planes, of the directions of the thrust required to counterbalance the gravitational field

creating artificial equilibrium points.
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Fig. 12 Adding the low-thrust; a) x′/z section of the spatial view; b) Intersection with the
plane x′/z and projection on this plane direction of the direction of the thrust required

6 Integrating the linearized motion

Theorem 1 For a linear system of the form:{
ẋ = Ax
x(t0) = x0

(31)

where x ∈ R6 and

A ∈ L(R6) :=
{

linear operators A : R6 → R6, with real coefficients
}

, if A has three

couples of eigenvalues complex conjugated λ, λ∗; ν, ν∗;ϕ,ϕ∗ ∈ C, where the complex

conjugated is indicated by the ∗, such that:

λ = λ
R

+ iλ
I
,

ν = ν
R

+ iν
I
,

ϕ = ϕ
R

+ iϕ
I
,

(32)

where λR = Re(λ) and λI = Im(λ) and λ
I
, ν
I
, ϕ

I
6= 0; then there exist a base of

vectors {u1,w1,u3,w3,u5,w5}, with u2j−1,w2j−1 ∈ R6 ∀j = 1, 2, 3, and where

f2j−1 = u2j−1 + iw2j−1, j = 1, 2, 3 are the eigenvectors of system (31), such that, in

this basis, the solution (t)ג = [ξ1(t), ξ2(t), ψ1(t), ψ2(t), ζ1(t), ζ2(t)]T of the problem is:

ξ1(t) = eλRt
(
cos (λ

I
t)ξ01 + sin (λ

I
t)ξ02

)
ξ2(t) = eλRt

(
cos (λ

I
t)ξ02 − sin (λ

I
t)ξ01

)
ψ1(t) = eνRt

(
cos (ν

I
t)ψ0

1 + sin (ν
I
t)ψ0

2

)
ψ2(t) = eνRt

(
cos (ν

I
t)ψ0

2 − sin (ν
I
t)ψ0

1

)
ζ1(t) = eϕRt

(
cos (ϕ

I
t)ζ01 + sin (ϕ

I
t)ζ02

)
ζ2(t) = eϕRt

(
cos (ϕI t)ζ

0
2 − sin (ϕ

I
t)ζ01

)
(33)

And therefore the solution x(t) = [x(t), y(t), z(t), vx(t), vy(t), vz(t)]T of system (31) will

be x(t) = Mג(t) where M is the matrix which provide the expression of the original

coordinates x = [x, y, z, vx, vy, vz ]T in terms of the new one, ג = [ξ1, ξ2, ψ1, ψ2, ζ1, ζ2]T ,

i.e. is the matrix of the change of coordinates.
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Proof:

The proof of this theorem is given in Appendix B.

For the theorem above it is enough to find the eigenvectors of the system, and its

solutions will be automatically obtained; moreover it will also provide the matrix M
of the change of coordinates, as will be shown later on.

The eigenvalues of the system will be the six vectors fj = uj+iwj ∈ C6, j = 1, ..., 6

which solve

Afj = Ψjfj , j = 1, ..., 6. (34)

As the six eigenvalues are three couples of complex conjugated numbers, the eigenvec-

tors must be three couples of complex conjugated vectors, namely f2j = u2j + iw2j =

u2j−1 − iw2j−1 = f∗2j−1, ∀j = 1, 2, 3. This, in particular implies that it is sufficient

to find three of the six eigenvectors, i.e. f1, f3 and f5. Moreover, in the case considered

in this paper, the eigenvalues have null Real part (i.e. are purely imaginary), and can

therefore be stated in a simpler form.

Therefore, to simplify notation, hereafter the eigenvectors of the system will be:

Ψ1 = λi,

Ψ2 = −λi,
Ψ3 = νi,

Ψ4 = −νi,
Ψ5 = ϕi,

Ψ6 = −ϕi.

(35)

A few algebraic manipulations of (34) lead to the determination of the coefficients

uk,j k = 1, 3, 5 j = 1, ..., 6 of the three eigenvectors corresponding to the eigenval-

ues λi, νi, ϕi respectively; these coefficients are listed in the supplementary electronic

material B.

Than the matrixM =

(
Mj,k

)
j = 1, ..., 6
k = 1, ..., 6

of the change of coordinates will be given

by

Mj,k =

{
uk,j if k odd

wk−1,j if k even
(36)

Applying the transformation of coordinatesM−1 on x = [x, y, z, vx, vy, vz ]T , yields

the new coordinates ג = [ξ1, ξ2, ψ1, ψ2, ζ1, ζ2]T , namely:

ג =M−1x. (37)

The transformationM−1 is then performed on the system (4) to find it’s expression

in the new coordinates:

ג̇ =M−1ẋ =M−1A x =M−1A M .ג (38)

Such a system can be rewritten as:

ג̇ = A′ ג with A′ =M−1A M (39)

with

A′ =


0 λ 0 0 0 0

−λ 0 0 0 0 0

0 0 0 ν 0 0

0 0 −ν 0 0 0

0 0 0 0 0 ϕ

0 0 0 0 −ϕ 0

 (40)
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whose solutions are 

ξ1(t) = cos (λt)ξ01 + sin (λt)ξ02
ξ2(t) = cos (λt)ξ02 − sin (λt)ξ01
ψ1(t) = cos (νt)ψ0

1 + sin (νt)ψ0
2

ψ2(t) = cos (νt)ψ0
2 − sin (νt)ψ0

1

ζ1(t) = cos (ϕt)ζ01 + sin (ϕt)ζ02
ζ2(t) = cos (ϕt)ζ02 − sin (ϕt)ζ01

(41)

Therefore the solution of system (15), given by x(t) =Mג(t), are:



x(t) =M1,1ξ1(t) +M1,2ξ2(t) +M1,3ψ1(t) +M1,4ψ2(t) +M1,5ζ1(t) +M1,6ζ2(t)
= u1,1ξ1(t) + w1,1ξ2(t) + u3,1ψ1(t) + w3,1ψ2(t) + u5,1ζ1(t) + w5,1ζ2(t)

y(t) =M2,1ξ1(t) +M2,2ξ2(t) +M2,3ψ1(t) +M2,4ψ2(t) +M2,5ζ1(t) +M2,6ζ2(t)
= u1,2ξ1(t) + w1,2ξ2(t) + u3,2ψ1(t) + w3,2ψ2(t) + u5,2ζ1(t) + w5,2ζ2(t)

z(t) =M3,1ξ1(t) +M3,2ξ2(t) +M3,3ψ1(t) +M3,4ψ2(t) +M3,5ζ1(t) +M3,6ζ2(t)
= u1,3ξ1(t) + w1,3ξ2(t) + u3,3ψ1(t) + w3,3ψ2(t) + u5,3ζ1(t) + w5,3ζ2(t)

(42)

where the coefficients uk,j k = 1, 3, 5 j = 1, ..., 6 are listed in the electronic supple-

mentary material B.

Notice that, evaluating x(0) = [x(0), y(0), z(0), ẋ(0), ẏ(0), ż(0)]T , as expected, yields:
x(0)

y(0)

z(0)

vx(0)

vy(0)

vz(0)

 =M



ξ01
ξ02
ψ0
1

ψ0
2

ζ01
ζ02

 (43)

which is equal to (37) evaluated at t = 0.

Recall that these resulting orbits, solutions of the linearized system, are expressed

in the system of reference translated to the artificial equilibrium point xe, ye, ze (see

(3)) such that they must be translated back to the barycenter of P1 and P2.

As the behaviors of the linear solution in (42), in the vicinity of the points A and

G, is qualitatively the same as the other six artificial equilibria, the dynamics starting

sufficiently close to these two points is shown, for the Sun-Jupiter-Asteroid-Spacecraft

system, where the spacecraft has the same mass of 624-Hektor, in Figures 13 and 14.

In these Figures, the x/y, x/z projections of the solution of the linearized system

are represented by the dark, continuous lines. As expected, after 12 Jovian years (∼
150 Earth years), they are still close to the respective starting points.

The dashed projection of the 3500km spherical domains around the points are also

plotted in the Figures.

Notice that, if the perturbation (the position error) on the z axis was null, the orbit

starting close to the point A would qualitatively degenerate to the two dimensional case

analyzed in Ceccaroni and Biggs (2010).

7 Integrating the full nonlinear system

The next step to illustrate the nonlinear stability of the linearly stable artificial equi-

libria identified in the previous section, is to perform a numerical integration of the

full nonlinear system in their vicinity. To this end, recalling system (15), the behavior

of a spacecraft starting sufficiently close to the points A and G is investigated.
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Fig. 13 The solution of the linearized system in the vicinity of the point A after 12 Jovian
years; a) x/y projection; b) x/z projection

Fig. 14 The solution of the linearized system in the vicinity of the point G after 12 Jovian
years; a) x/y projection; b) x/z projection

Recalling the evaluation of the thrust needed to create artificial equilibrium points in

A and G stated in Section 5, a numerical integration with Mathematica using a Runge-

Kutta method is performed, starting sufficiently close to our initial points. The dark,

continuous lines in Figures 15 and 16 are the x/y and x/z projections of the numerical

solutions close to A and G respectively, evaluated for a null initial velocity. Once again

the solutions are represented for the first 12 Jovian years and the dashed projection of

the 3500km spherical domains around the points appears in the Figures as well.

As a result of the application of the same method on the points B, C, D, H, E,

and F , other six orbits are obtained, which, starting sufficiently close to the respec-

tive point with null initial velocity, will remain bounded around it. In particular, for

approximately 150 Earth years, the motion starting close to each of the eight points, re-

mains within the round domain, 3500km radius, outside the unstable zone. Moreover

the orbits obtained can be divided into four similarly-behaving couples (A/C, B/D,

H/F and G/E, in which, the two elements of the last two couples perfectly mirror each

other), where, in particular, the motion starting close to B or D or that starting close

to H or F remains bounded within an area much smaller than 3500km. Furthermore,

looking at their behaviors it is clear that care must be taken to the choice of the initial



22 M. Ceccaroni, J. Biggs

Fig. 15 The solution of the full nonlinear system in the vicinity of the point A after 12 Jovian
years; a) x/y projection; b) x/z projection

Fig. 16 The solution of the full nonlinear system in the vicinity of the point G after 12 Jovian
years; a) x/y projection; b) x/z projection

conditions as there is a trade-off between the amplitude of the oscillations about the

initial point (in the z direction) and the fuel required, i.e. fuel can be saved at the

expense of larger oscillations.

8 The numerical simulation of the real system

As there are no actual Jupiter Trojans in or close to L4 a numerical simulation was

required in order to compare the results found analytically in the simplified model.

The actual orbits of Jupiter and 624-Hektor were derived by interpolating their daily

observed position and velocity vectors (found in the JPL Small Bodies Database). In

this real model the orbit of Jupiter is elliptic, and the velocity of revolution is no longer

constant. Fortunately the resulting effects on the system are minimal due to the low

eccentricity of Jupiter’s real orbit. In addition all the tadpole orbits of the main Jupiter

Trojans are inclined up to 20 degrees with respect to the plane containing Jupiter’s

orbit around the Sun. Thus, as the x/y plane of the system of reference used is set

to be the one containing the three massive planets, the change in inclination of this
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plane will greatly affect the change of velocity of the system ω̇ (in the theoretical model

ω̇ = 0) therefore representing the main difference between the two models.

The eight artificial equilibria chosen in Section 6, which are bounded in the simplified

model, in the real model result to be unstable, quickly diverging from 624-Hektor. The

x/y projections of their orbits are shown in Figure 17 for a period of around 36 years

(∼ 3 revolutions of Jupiter(and of Hektor) around the Sun).

The numerical integration of many other artificial equilibrium points was then under-

Fig. 17 The unstable zone of the model enlarges and the eight artificial equilibria above
become unstable; a) The orbit generating by the point A in the real system; b) The orbit
generating from the point G in the real system

taken. Results highlight a shift of the model towards instability, i.e. an enlargement of

the unstable zone. This result is expected considering the perturbations added in the

real model.

However, a zone of finite-time bounded orbits was found, in which all the orbits remain

bounded within ∼ 3.5×106 km from the Asteroid for at least 36 Terrestrial years before

starting to diverge. In this zone two artificial equilibria A′ and G′ where chosen, lying

on the line connecting the Asteroid with the points A and G respectively, at a distance

of 2.5 and 2.3 times their distance from the Asteroid. These artificial equilibria can

be generated with a thrust lower then 4× 10−4N(still well within the feasible range),

kept constant during the motion. The x/y projection of the resulting orbits, for ∼ 3

revolution of Jupiter around the Sun, is shown in Figure 18 a) and b). It must be noted

that, due to the x/y projection, the second orbit seems to spiral around the Asteroid

but instead is displaced spatially.
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Fig. 18 Two orbits of the finite-time bounded zone of the real case after 3 Jovian years; a)
The starting point A′ is set on the line connecting A and Hektor at a distance of 544903 km
from the Asteroid ; b) The starting point G′ is set on the line connecting G and Hektor at a
distance of 711477 km from the Asteroid

Thus the simplified model studied here can give some indications of where weakly

unstable solutions about a real Trojan may exist. Moreover it is clear that the pertur-

bations due to a nonconstant velocity of revolution and the inclination of the tadpole

orbits of the main Trojans must be taken into account when analysing stability.

9 Summary

A low thrust autonomous coplanar CRFBP, with the primaries set in the Lagrangian

equilateral triangle configuration, has been formulated for both the purpose of math-

ematical interest as well as to investigate potential applications in the Sun-Jupiter-

Asteroid-Spacecraft system. The analyses of the natural evolution of the system was

performed, for a range of conceivable masses of a hypothetical asteroid set at the li-

bration point L4, which revealed eight natural equilibrium points, four of which are

close to the asteroid. Of these, a linear stability analysis revealed that the two closest

are unstable and the other two stable, when considering as primaries the Sun and two

other bodies of the solar system.

Adding a low-thrust propulsion system to the spacecraft, which can thrust in every

direction, including perpendicular to the plane containing the three massive bodies, a

region of stable artificial equilibrium points close to the asteroid was created. As the

“UK ion propulsion programme” has culminated in the availability of three thrusters of

different sizes, covering the thrust 10−3N to 0.3N range (Fearn and Crookham, 2005),

based on the T5, T6 and UK-25 propulsion systems, the assumed low-thrust potential

for the spacecraft was initially based on current capability. Moreover completely novel,

bounded orbits were proved to exist in the spatial vicinity of the asteroid which can

be maintained with a constant thrust lower than the 0.1% of the maximum thrust

capability, oriented in a fixed direction. Such result suggests that a shift towards micro

propulsion systems (MPS) could be more appropriate for this application. Therefore,

the Field Emission Electric Propulsion (FEEP) technology used in the Lisa pathfinder

experiment on Einstein’s geodesic motion in space, which operates in the micro-Newton

field covering the range from 1×10−7N up to 5×10−4N (Nicolini, 2007), may provide

a more effective propulsion system for the proposed application.
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This paper illustrates that by exploiting low-thrust, it would be possible to maintain

strategic observation points, more than 66% closer to the hypothetical asteroid than

the stable natural equilibrium points. This would enable a continuous synoptic view of

the hypothetical asteroid itself.

A numerical simulation of the system was then performed, based on the real obser-

vations of the orbits of Jupiter and the 624-Hektor Trojan Asteroid to test the result

when the asteroid is moving on its real tadpole orbit instead of remaining fixed in

L4. Results show a shift of the real model towards instability, i.e. the unstable zone

enlarges, due to the inclusion in the real model of high perturbations.

However, numerical integration highlights a zone of finite-time bounded orbits for the

real model, in which the orbits remain bounded within ∼ 3.5× 106km from the Aster-

oid for at least 36 Terrestrial years(∼ 3 Jupiter’s and Hektor’s revolutions around the

Sun) before starting to escape. These finite-time bounded orbits can be maintained by

using a constant thrust lower than 4× 10−4N without the need for any state feedback

control.
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Appendix A

We are interested in the equilibrium points Mj , j = 1, ..., 8 defined at the three

intersect of the surfaces that satisfy the equations of (2). As the third equation (i.e.
∂Ω
∂z = 0) is clearly satisfied by the plane z = 0 , the equilibrium points Mj , j = 1, ..., 8,

are bounded to stay on the z = 0 plane, which, equivalently, can be seen as the de-

generation of system (2) into a two dimensional system, once the solution of the third

equation, namely z = 0, is substituted in. Such system is qualitatively the same treated

in Ceccaroni and Biggs (2010) whose solution is shown by Figure 19. In particular the

light curve in the figure represents the solution of the first equation of system (2), the

dark line shows the solution of the second equation of the system and the third equa-

tion (i.e. ∂Ω∂z = 0) is clearly satisfied by the plane z = 0, plotted in all the Figure as well.

Fig. 19 Equilibrium points; Intersection with the plane z = 0
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Appendix B

Let be λ, λ∗; ν, ν∗;ϕ,ϕ∗ ∈ C the eigenvalues of the system (31) and fj = uj + iwj ∈
R6, j = 1, ..., 6 the respective eigenvectors.

Since {u1,w1,u3,w3,u5,w5} is a base of R6, then ∀s ∈ R6 there exist s1, ..., s6 ∈
R such that s = s1u1 + s2w1 + s3u3 + s4w3 + s5u5 + s6w5.

A′


s1
s2
s3
s4
s5
s6

 = ... = s1


A′1,1
A′2,1
A′3,1
A′4,1
A′5,1
A′6,1

+ ...+ s6


A′1,6
A′2,6
A′3,6
A′4,6
A′5,6
A′6,6

 (44)

Then, of course, being the A and A′ the expression of the same system in two different

coordinates, and being M the matrix of the change of coordinates, yields that (44) is

also equal to:

A


s1M1,1 + s2M2,1 + s3M3,1 + s4M4,1 + s5M5,1 + s6M6,1

s1M1,2 + s2M2,2 + s3M3,2 + s4M4,2 + s5M5,2 + s6M6,2

s1M1,3 + s2M2,3 + s3M3,3 + s4M4,3 + s5M5,3 + s6M6,3

s1M1,4 + s2M2,4 + s3M3,4 + s4M4,4 + s5M5,4 + s6M6,4

s1M1,5 + s2M2,5 + s3M3,5 + s4M4,5 + s5M5,5 + s6M6,5

s1M1,6 + s2M2,6 + s3M3,6 + s4M4,6 + s5M5,6 + s6M6,6



= s1A


M1,1

M2,1

M3,1

M5,1

M6,1

+ ...+ s6A


M1,6

M2,6

M3,6

M4,6

M5,6

M6,6



= s1


A(u1)/u1

A(u1)/w1

A(u1)/u3

A(u1)/w3

A(u1)/u5

A(u1)/w5

+ ...+ s6


A(w5)/u1

A(w5)/w1

A(w5)/u3

A(w5)/w3

A(w5)/u5

A(w5)/w5



(45)

Where, with / it is indicated the projection, e.g. A(u1)/u1 means the component of

A(u1) in the u1 direction.

Equating (44) and (45) we find that, being A′ =

(
A′j,k

)
j = 1, ..., 6
k = 1, ..., 6

,

A′j,k =


A(uk)/uj if k, j odd

A(wk−1/uj if k even, j odd

A(uk)/wj−1 if j even, k odd

A(wk−1)/wj−1 if k, j even

(46)

Now, given A ∈ L(R6), let us define AC as the “complexification” of A, namely,

AC ∈ L(C6) such that ∀f = u + iw ∈ C6, u, w ∈ R6, AC(f) := A(u) + iA(w).
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Then, taking A as in (31) and the first eigenvector f1 ∈ C6 yields:

AC(f1) = A(u1) + iA(w1) (47)

But, since f1 is an eigenvector of A, it is also true that:

AC(f1) = λf1 = (λR + iλI)(u1 + iw1) = (λRu1 − λIw1) + i(λIu1 + λRw1) (48)

Equaling the Real and Imaginary parts of (47) and (48) yields:

A(u1) = λRu1 − λIw1

A(w1) = λRw1 + λIu1
(49)

Repeating the analogous procedure for the other eigenvectors we finally find that:

A′ =


λR λI 0 0 0 0

−λI λR 0 0 0 0

0 0 νR νI 0 0

0 0 −νI νR 0 0

0 0 0 0 ϕR ϕI
0 0 0 0 −ϕI ϕR

 (50)

Than, in this basis, the system takes the form

(t)ג̇ = A′ג(t) (51)

with (t0)ג = [ξ01(t), ξ02(t), ψ0
1(t), ψ0

2(t), ζ01 (t), ζ02 (t)]T . This system is solved by

(t)ג = eA(t0)ג
′t (52)

For the well known property of the exponential of a matrix12 we find that if A′ is as

in (50) than S = eA
′t is a block matrix (6× 6) such that:

S = eA
′t =

S1 0 0

0 S2 0

0 0 S3

 (53)

with

S1 =

(
eλRt cos (λI t) −eλRt sin (λI t)

eλRt cos (νI t) e
λRt sin (λI t)

)
S2 =

(
eνRt cos (νI t) −eνRt sin (νI t)

eνRt cos (νI t) e
νRt sin (νI t)

)
(54)

S3 =

(
eϕRt cos (ϕI t) −eϕRt sin (ϕI t)

eϕRt cos (ϕI t) e
ϕRt sin (ϕI t)

)
that is exactly the one in (33).

Finally, for how the solution has been derived, it is clear that x(t) =Mג(t) ut.

2 1 This property is straight forward from direct calculations once the basis in which the
matrix of the system A is diagonal (but with complex coefficients) is known.


