52 research outputs found

    ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Get PDF
    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs

    Simultaneous and panchromatic observations of the fast radio burst FRB 20180916B

    Get PDF
    Aims. Fast radio bursts are bright radio transients whose origins are not yet understood. The search for a multi-wavelength counterpart of those events can set a tight constraint on the emission mechanism and the progenitor source.Methods. We conducted a multi-wavelength observational campaign on FRB 20180916B between October 2020 and August 2021 over eight activity cycles of the source. Observations were carried out in the radio band by the SRT both at 336 and 1547 MHz and the uGMRT at 400 MHz. Simultaneous observations were conducted by the optical telescopes Asiago (Galileo and Copernico), CMO SAI MSU, CAHA 2.2 m, RTT-150 and TNG, and X/?-ray detectors on board the AGILE, Insight-HXMT, INTEGRAL, and Swift satellites.Results. We present the detection of 14 new radio bursts detected with the SRT at 336 MHz and seven new bursts with the uGMRT from this source. We provide the deepest prompt upper limits in the optical band for FRB 20180916B to date. In fact, the TNG/SiFAP2 observation simultaneous to a burst detection by uGMRT gives an upper limit E-optical/E-radio < 1.3 x 10(2). Another burst detected by the SRT at 336 MHz was also co-observed by Insight-HXMT. The non-detection in the X-rays yields an upper limit (1 - 30 keV band) of EX - ray/E-radio in the range of (0.9 - 1.3) x 10(7), depending on the model that is considered for the X-ray emission

    Simultaneous and panchromatic observations of the Fast Radio Burst FRB 20180916B

    Get PDF
    Aims. Fast Radio Bursts are bright radio transients whose origin has not yet explained. The search for a multi-wavelength counterpart of those events can put a tight constrain on the emission mechanism and the progenitor source. Methods. We conducted a multi-wavelength observational campaign on FRB 20180916B between October 2020 and August 2021 during eight activity cycles of the source. Observations were led in the radio band by the SRT both at 336 MHz and 1547 MHz and the uGMRT at 400 MHz. Simultaneous observations have been conducted by the optical telescopes Asiago (Galileo and Copernico), CMO SAI MSU, CAHA 2.2m, RTT-150 and TNG, and X/Gamma-ray detectors on board the AGILE, Insight-HXMT, INTEGRAL and Swift satellites. Results. We present the detection of 14 new bursts detected with the SRT at 336 MHz and seven new bursts with the uGMRT from this source. We provide the deepest prompt upper limits in the optical band fro FRB 20180916B to date. In fact, the TNG/SiFAP2 observation simultaneous to a burst detection by uGMRT gives an upper limit E_optical / E_radio < 1.3 x 10^2. Another burst detected by the SRT at 336 MHz was also co-observed by Insight-HMXT. The non-detection in the X-rays yields an upper limit (1-30 keV band) of E_X-ray / E_radio in the range of (0.9-1.3) x 10^7, depending on which model is considered for the X-ray emission.Comment: A&A accepte

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    X-ray polarimetry of X-ray pulsar X Persei: another orthogonal rotator?

    Get PDF
    X Persei is a persistent low-luminosity X-ray pulsar of period of ≈ 835 s in a Be binary system. The field strength at the neutron star surface is not known precisely, but indirect signs indicate a magnetic field above 1013 G, which makes the object one of the most magnetized known X-ray pulsars. Here we present the results of observations X Persei performed with the Imaging X-ray Polarimetry Explorer (IXPE). The X-ray polarization signal was found to be strongly dependent on the spin phase of the pulsar. The energy-averaged polarization degree in 3–8 keV band varied from several to ∼20 per cent over the pulse with a phase dependence resembling the pulse profile. The polarization angle shows significant variation and makes two complete revolutions during the pulse period, resulting in nearly nil pulse-phase averaged polarization. Applying the rotating vector model to the IXPE data we obtain the estimates for the rotation axis inclination and its position angle on the sky, as well as for the magnetic obliquity. The derived inclination is close to the orbital inclination, reported earlier for X Persei. The polarimetric data imply a large angle between the rotation and magnetic dipole axes, which is similar to the result reported recently for the X-ray pulsar GRO J1008−57. After eliminating the effect of polarization angle rotation over the pulsar phase using the best-fitting rotating vector model, the strong dependence of the polarization degree with energy was discovered, with its value increasing from 0 at ∼2 keV to 30per cent at 8 keV

    Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1

    Get PDF
    A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray–emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. These observations reveal that hot x-ray–emitting plasma is spatially extended in a plane perpendicular to, not parallel to, the jet axis
    corecore