364 research outputs found

    Inactive X chromosome-specific reduction in placental DNA methylation

    Get PDF
    Genome-wide levels of DNA methylation vary between tissues, and compared with other tissues, the placenta has been reported to demonstrate a global decrease in methylation as well as decreased methylation of X-linked promoters. Methylation is one of many features that differentiate the active and inactive X, and it is well established that CpG island promoters on the inactive X are hypermethylated. We now report a detailed analysis of methylation at different regions across the X in male and female placenta and blood. A significant (P < 0.001) placental hypomethylation of LINE1 elements was observed in both males and females. Relative to blood placental promoter hypomethylation was only observed for X-linked, not autosomal promoters, and was significant for females (P < 0.0001) not males (P = 0.9266). In blood, X-linked CpG island promoters were shown to have moderate female methylation (66% across 70 assays) and low (23%) methylation in males. A similar methylation pattern in blood was observed for ∼20% of non-island promoters as well as 50% of the intergenic or intragenic CpG islands, the latter is likely due to the presence of unannotated promoters. Both intragenic and intergenic regions showed similarly high methylation levels in male and female blood (68 and 66%) while placental methylation of these regions was lower, particularly in females. Thus placental hypomethylation relative to blood is observed globally at repetitive elements as well as across the X. The decrease in X-linked placental methylation is consistently greater in females than males and implicates an inactive X specific loss of methylation in the placenta

    Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.</p> <p>Methods</p> <p>We describe two novel mutations in the connexin32 gene in two Norwegian families.</p> <p>Results</p> <p>Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands.</p> <p>The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals.</p> <p>Conclusion</p> <p>The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.</p

    Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion

    Variability of Sequence Surrounding the Xist Gene in Rodents Suggests Taxon-Specific Regulation of X Chromosome Inactivation

    Get PDF
    One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene (antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents. We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied. Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall, our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby suggesting that the regulation of XCI may be at least partially taxon-specific

    A Novel RNA Transcript with Antiapoptotic Function Is Silenced in Fragile X Syndrome

    Get PDF
    Several genome-wide transcriptomics efforts have shown that a large percentage of the mammalian genome is transcribed into RNAs, however, only a small percentage (1–2%) of these RNAs is translated into proteins. Currently there is an intense interest in characterizing the function of the different classes of noncoding RNAs and their relevance to human disease. Using genomic approaches we discovered FMR4, a primate-specific noncoding RNA transcript (2.4 kb) that resides upstream and likely shares a bidirectional promoter with FMR1. FMR4 is a product of RNA polymerase II and has a similar half-life to FMR1. The CGG expansion in the 5′ UTR of FMR1 appears to affect transcription in both directions as we found FMR4, similar to FMR1, to be silenced in fragile X patients and up-regulated in premutation carriers. Knockdown of FMR4 by several siRNAs did not affect FMR1 expression, nor vice versa, suggesting that FMR4 is not a direct regulatory transcript for FMR1. However, FMR4 markedly affected human cell proliferation in vitro; siRNAs knockdown of FMR4 resulted in alterations in the cell cycle and increased apoptosis, while the overexpression of FMR4 caused an increase in cell proliferation. Collectively, our results demonstrate an antiapoptotic function of FMR4 and provide evidence that a well-studied genomic locus can show unexpected functional complexity. It cannot be excluded that altered FMR4 expression might contribute to aspects of the clinical presentation of fragile X syndrome and/or related disorders

    Diagnostische Bedeutung der Proteinbindung von Plasmacortisol, bestimmt durch Dextrangelfiltration

    Get PDF
    1. Mittels Dextrangelfiltration wurde nach Inkubation von markiertem Cortisol und Plasma der proteingebundene und der sog. freie Anteil (%) des endogenen Plasmacortisols ermittelt und bei gleichzeitiger fluorimetrischer Bestimmung der 11-OHCS auch die Menge proteingebundenen, bzw. sog. freien Cortisols (µg-%) berechnet. 2. Die diagnostische Brauchbarkeit der Methode wurde bei Patienten mit Nebennierenrindeninsuffizienz, mit Hypophysentumoren, nach Hypophysektomie, mit Cushing-Syndrom mit der fluorimetrischen Bestimmung der 11-OHCS verglichen. Die einfache Bestimmung der Cortisolbindung war bei hypophysektomierten Patienten der Bestimmung der 11-OHCS überlegen und entsprach der aufwendigeren ACTH-Belastung. 3. Falsch hohe fluorimetrische 11-OHCS-Spiegel im Plasma unter Spirolacton- oder Oestrogenbehandlung und in der Gravidität lassen sich durch Bestimmung der Cortisolbindung klären. Bei Schilddrüsenüberfunktion war das sog. freie Cortisol im Plasma relativ und absolut vermehrt, bei Schilddrüsenunterfunktion fand sich eine Zunahme des plasmaproteingebundenen Cortisols.1. Following incubation of labeled cortisol and plasma the percentages of protein bound and socalled free endogenous cortisol were determined by means of dextran gel filtration. 2. The diagnostic value of this method was compared with fluorimetric determinations of 11-OHCS for patients with adrenal insufficiency, Cushing-Syndrome, pituitary tumors and after hypophysectomy. In hypophysectomized patients the simple determination of protein bound cortisol was found to correlate well with diagnostic ACTH-infusion tests and to be more sensitive than fluorimetric determinations of 11-OHCS in 9 a.m. plasma. 3. Falsely elevated fluorimetric values of plasma 11-OHCS in patients treated with spirolactone or estrogens, resp. during pregnancy may be recognized through determination of cortisol binding. — In thyrotoxicosis socalled free cortisol was elevated, both relatively and absolutely; in hypothyroidism an increase of protein bound cortisol was found

    Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells

    Get PDF
    It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity
    corecore